Japan-Russia workshop on supercomputing modeling, instability and turbulence in fluid dynamics (JR SMIT2015) Keldysh Institute for Applied Mathematics RAS, Moscow, Russia, March 4-6, 2015

Numerical simulation of subsonic turbulent viscous compressible flows using quasi-gas dynamic equations

Ivan A. SHIROKOV

Lab. of Mathematical Modeling in Physics, Moscow State University, Russia

Tatiana G. ELIZAROVA

Keldysh Inst. for Applied Math. Russian Academy of Sciences, Moscow, Russia

Outline

- 1. Introduction: context of the work
- 2. Quasi-Gas Dynamic (QGD) equations as an extention of Navier-Stokes system
- 3. Discretization and numerical algorithm
- 4. Laminar-turbulent transition in Taylor-Green vortex simulation. Isotropic flow
- 5. Laminar and turbulent regimes in Couette flow simulation. Boundary layer flow
- 6. Conclusions

- The objective of the present work is to show the possibilities of the so-called Quasi-Gas Dynamic (QGD) equations for laminarturbulent transition in compressible heat-conducting gas flow simulations.
- These equations were developed by Chetverushkin, Elizarova, Sheretov and co-workers and were nicely presented in the talk of B.N. Chetverushkin in the morning session
- QGD equations can be obtained basing on Navier-Stokes Eqs.
 They have additional smoothing or regularization.
- QGD equations can be used in different areas, including Rarefied Gas Dynamics, shock-wave flow simulations and in turbulent flow simulations

Quasi-gas-dynamic equations as an extension of Navier-Stokes system

Navier-Stokes equations

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0, \\ \frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_k u_i}{\partial x_k} + \frac{\partial p}{\partial x_i} = \rho F_i + \frac{\partial \Pi_{ki}}{\partial x_k}, \\ \frac{\partial}{\partial t} \rho \left(\frac{u^2}{2} + \varepsilon\right) + \frac{\partial}{\partial x_i} \rho u_i \left(\frac{u^2}{2} + \varepsilon + \frac{p}{\rho}\right) + \frac{\partial q_i}{\partial x_i} = \rho u_i F_i + \frac{\partial}{\partial x_i} \Pi_{ik} u_k + Q \end{cases}$$

Averaging of Navier-Stokes system over a small time interval $(t, t + \Delta t)$

$$\left\langle f(x,t) \right\rangle = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} f(x,t') dt'$$

$$\left[\frac{\partial \langle \rho \rangle}{\partial t} + \frac{\partial \langle \rho u_i \rangle}{\partial x_i} = 0, \\ \frac{\partial \langle \rho u_i \rangle}{\partial t} + \frac{\partial \langle \rho u_k u_i \rangle}{\partial x_k} + \frac{\partial \langle p \rangle}{\partial x_i} = \langle \rho F_i \rangle + \frac{\partial \langle \Pi_{ki} \rangle}{\partial x_k}, \\ \frac{\partial \partial \partial t}{\partial t} \left\langle \rho \left(\frac{u^2}{2} + \varepsilon \right) \right\rangle + \frac{\partial \partial \partial x_i}{\partial x_i} \left\langle \rho u_i \left(\frac{u^2}{2} + \varepsilon + \frac{p}{\rho} \right) \right\rangle + \frac{\partial \langle q_i \rangle}{\partial x_i} = \langle \rho u_i F_i \rangle + \frac{\partial \partial \partial x_i}{\partial x_i} \langle \Pi_{ik} u_k \rangle + \langle Q H_i \rangle$$

$$\left\langle f(x,t)\right\rangle = f(x,t) + \tau \frac{\partial f(x,t)}{\partial t} \qquad O(\tau^2), O(\mu\tau), O(\kappa\tau), \frac{\partial^2}{\partial t^2}$$

Example – continuity equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} \left(\rho u_i + \tau \frac{\partial \rho u_i}{\partial t} \right) = 0$$

$$\frac{\partial \rho u_i}{\partial t} = -\frac{\partial}{\partial x_j} \left(\phi u_i u_j + p \delta_{ij} \right)$$

Here we introduce the notations for the additional velocity and mass flux:

$$w_{i} = \frac{\tau}{\rho} \frac{\partial}{\partial x_{j}} \oint u_{i}u_{j} + p\delta_{ij} \qquad j_{i} = \rho \langle q_{i} - w_{i} \rangle$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial j_{i}}{\partial x_{i}} = 0$$

For momentum and total energy equations additional \mathcal{T} terms are calculated using Euler equations and differential identities

$$\tau \frac{\partial}{\partial t} \frac{1}{\rho} = -\tau \left(u_i \frac{\partial}{\partial x_i} \frac{1}{\rho} - \frac{1}{\rho} \frac{\partial u_i}{\partial x_i} \right)$$
$$\tau \frac{\partial}{\partial t} u_i = -\tau \left(u_j \frac{\partial u_i}{\partial x_j} + \frac{1}{\rho} \frac{\partial p}{\partial x_i} - F_i \right)$$
$$\tau \frac{\partial}{\partial t} \varepsilon = -\tau \left(u_i \frac{\partial \varepsilon}{\partial x_i} + \frac{p}{\rho} \frac{\partial u_i}{\partial x_i} - \frac{Q}{\rho} \right)$$
$$\tau \frac{\partial}{\partial t} p = -\tau \left(u_i \frac{\partial p}{\partial x_i} + \gamma p \frac{\partial u_i}{\partial x_i} - (\gamma - 1)Q \right)$$

$$\begin{aligned} \frac{\partial}{\partial t} \rho + \nabla_i j_m^i &= 0 \\ \frac{\partial}{\partial t} \rho u^j + \nabla_i \ j_m^i u^j \ + \nabla^j p &= \nabla_i \Pi^{ij} \\ \frac{\partial}{\partial t} E + \nabla_i \ j_m^i H \ + \nabla_i q^i &= \nabla_i \ \Pi^{ij} u_j \end{aligned}$$

QGD equations

$$\tau = ?$$

$$j_{m}^{i} = \rho(u^{i} - w^{i}), \quad w^{i} = \frac{\tau}{\rho} \nabla_{j}\rho u^{i}u^{j} + \nabla^{i}p \quad \text{mass flux}$$

$$\Pi^{ij} = \Pi^{ij}_{NS} + \tau u_{i}\rho \quad u_{k}\nabla^{k}u_{j} + (\nabla_{j}p)/\rho$$

$$+ \tau\delta^{ij} \quad u_{k}\nabla^{k}p + \gamma p\nabla^{k}u_{k} \quad \text{shear-stress tensor}$$

$$\Pi^{ij}_{NS} = \mu \quad \nabla^{i}u^{j} + \nabla^{j}u^{i} - (2/3)\nabla^{k}u_{k} + \varsigma\delta^{ij}\nabla^{k}u_{k}$$

$$q^{i} = q_{NS}^{i} - \tau u_{i}\rho \quad u_{j}\nabla^{j}\varepsilon + pu_{j}\nabla^{j}(1/\rho) \quad \text{heat flux}, \quad q_{NS}^{i} = -\kappa\nabla^{i}T$$

Properties of QGD equations

- QGD Eqs have the form of conservation laws, including entropy theorem and angular momentum conservation.
- Prandtl boundary layer limit is obtained.
- Common exact solutions with the NS system for a number of classical problems (e.g., Couette flow, barometric distribution).
- A number of theoretical results Petrovski parabolicity, linearased stability of equilibrium solutions, ets.. (Yu.V. Sheretov,
- A.A. Zlotnik,...)

Discretization and numerical algorithm

Explicit-in-time finite-difference scheme with central differences approximation for all space derivatives

Benefits of QGD equations

- Additional dissipative τ -terms act as a "built in" regularization that contributes to the stability of the algorithms.
- Allows using simple and efficient algorithms for computing liquid and supersonic-subsonic gas flows:
 - Space-derivatives, including those appearing in convective terms, are approximated by centered finite differences
 - Suited to unstructured grids
 - Explicit-in-time (conditionally stable)
 - Suited to unsteady flows
 - Facility of parallelization
- regularization parameter is related with grid step h and local sound velocity c

$$\tau = \alpha h/c$$

Parallel computing

- Computations were carried out on highly-parallel computers Keldysh-100 and BlueGene/P of the Russian Academy of Sciences.
- A parallel variant of the numerical algorithm was based on a decomposition of the computational domain by planes x = cste.
- MPI standard was used to allow portability between computers.
- For the problem under consideration, parallelization results in a linear efficiency increase with increasing the number of nodes.
- Computer Keldysh-100 is approximately 10 times more efficient than BlueGene/P for an identical number of active nodes.

Sod problem, strong discontinuity decay

Grid step h, number of points **N**: 200 400 0.5 800 0.25 1600 0.125 3200 0.0625 6400 0.03125 Coefficient α : 0.02 0.10 0.50 1.00

Interaction of shock and entropy waves, grid convergence

Quasi-Gas Dynamic equations for turbulent flows

- Relating the value of τ to the space-grid step h as $\tau \sim h/c$, where c is the local sound velocity, we can consider the associated viscosity as an original variant of sub-grid dissipation in LES models, that averages the fluctuations of flow parameters on a time-space scale depending on discretization.
- This sub-grid dissipation differs from the Smagorinsky viscosity, as the τ -terms have another mathematical structure and additional terms appear not only in the momentum and energy equations, but also in the continuity equation. This latter property models the turbulent mass-diffusion, which is inherent to turbulent mixing.

– Along a wall, the T-terms vanish.

τ= α h/c
accounts for subgrid dissipation
sound velocity c is estimated locally *h* is the grid resolution
α is an empirical coefficient

Numerical simulation of Taylor-Green flow

The evolution of the single-vortex flow, defined at the initial time as the Taylor-Green vortex may be one of the simplest flow for which a laminar-turbulent transition can be observed numerically. This process includes two stages

- large scale vorticities break into smaller ones in laminar regime

- after the time point corresponding to the maximum dissipation rate vortex decay leads to a turbulent energy cascade

Taylor-Green flow: problem formulation

Boundary conditions are periodic for X, Y, Z

Innitial conditions : Teylor-Green vortex

 $u_x = U_0 \sin(x/L) \cos(y/L) \cos(z/L)$ $u_y = -U_0 \cos(x/L) \sin(y/L) \cos(z/L)$ $u_z = 0$

Mach number: $Ma = U_0 / c_{s0} = 0.1$

 C_{S0} - sound velocity in nitrogen with initial temperature

Reynolds number: Re = $\rho_0 U_0 L / \mu_0$

 $\mu_{\!_0}$ - viscosity of the nitrogen for initial temperature

 $p = p_0 + (\rho_0 U_0^2 / 16)(\cos(2x/L) + \cos(2y/L))(\cos(2z/L) + 2)$

Re=100 evolution of iso-surfaces of z-component of vorticity $V_z = 0.2$ $V_z = -0.2$ $V_z = \partial u_y / \partial x - \partial u_x / \partial y$

Re=100, kinetic energy and dissipation rate, grid convergence

Re=280, kinetic energy and dissipation rate, grid convergence

Re=1600, evolution of iso-surfaces of z-component of vorticity Vz = 0.7 Vz = -0.7 $Vz = \partial u_y / \partial x - \partial u_x / \partial y$ t= 0.0 t= 5.0 t=10.0 0.01 0.01 0.01 10 N 10 N N -0.01 -0.01 -0.01 -0.01 0.01 -0.01 0.01 10 0+ * 0.0 0.01 0.0 0.0 0.01 0.01 t=15.0 t=20.0 t=22.5 0.01 0.01 0.01 10 _N 10 N 0 N -0.01 -0.01 -0.01 -0.0 0.01 0.01 0.01 0.01 0.0 0.01 0.01 0.01

Re=1600, kinetic energy and dissipation rate, grid convergence

Spectrum of kinetic energy, Kolmogorov-Obukhov law

Kinetic energy and dissipation rate, tuning coefficient convergence (Re=1600)

Comparison of dissipation rate evolution for Re=100, 280 and 1600

Symmetry of the numerical solution the

conservation of the flow symmetry is related with the conservation of the invariants – helicity (in 3D) and enstropy (2D), that are fundamentaly related with the symmetry of the flow

Re=1600

Re=100

[1] M. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, U. Frisch. Small-scale structure of the Taylor-Green vortex. J. Fluid Mech., 1983, vol. 130, pp. 411–452.

[2] Wim M. van Rees, Anthony Leonard, D.I. Pullin, Petros Koumoutsakosa. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. J. of Computational Physics, 2011, vol. 230, pp. 2794–2805

[3] J.B. Chapelier, M. De La Llave Plata, F. Renac, E. Martin. Final abstract for ONERA Taylor-Green DG participation. 1st International Workshop On High-Order CFD Methods. January 7-8, 2012 at the 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee

Couette flow: problem formulation

Initial conditions

$$u_x = U_0 y / L_y$$

Initial

disturbance: $u_y = u_z = 0.2 \ U_0 \sin(8\pi x / L_x)$

$$T = T_0 = 273 K$$

p and ρ are defined by Reynolds number

Boundary conditions

Solid walls,
$$y=0$$
: $u_x = u_y = u_z = 0$
 $y=L_y$: $u_x = U_y$, $u_z = u_z = 0$

$$y = 0, \quad y = L_y: - \begin{cases} \frac{\partial p}{\partial n} = 0\\ \frac{\partial \rho}{\partial n} = 0\\ \frac{\partial T}{\partial n} = 0 \end{cases}$$

Periodic boundary conditions in the streamwise (X) and the spanwise (Z) directions

Couette flow, gas-dynamic parameters for nitrogen

R = 297 J/(kg·K).	Gas constant			
$\gamma = 7/5$	specific heat ratio for nitrogen			
Pr = 14/19	Prandtl number			
$T_0 = 273$ K	Initial temperature			
$\mu = \mu_0 (T / T_0)^{\omega}$	Temperature power-law			
$\mu_0 = 1.67 \cdot 10^{-5} \text{ kg/(m·s)}$	Viscosity coefficient for $T_0 = 273$			
$\omega = 0.74$	Coefficient in temperature power-law			
$U_0 = 168.5$ m/s	Velocity of the upper wall			
$c_s = \sqrt{\gamma RT}$	Sound velocity			
$c_{so} = \sqrt{\gamma R T_0} = 337 \text{ m/s}$	Sound velocity for initial conditions			
$Ma = U_0 / c_{s0} = 0.5$	Mach number for initial conditions			

Couette flow: computational parameters

$L_x = 0.16$ M	Channel length		
$L_y = 0.08$ M	Channel height – the distance between solid walls		
$L_z = 0.08$ M	Channel width		
$N_x = 162$ $N_y = 82$ $N_z = 82$	Space computational grid		
h = 0.001 M	Computational grid step		
$h_{t} = \beta h/c_{s0} = 5.936 \cdot 10^{-7}$ c	Time step		
$\beta = 0.2$	Courant number		
$\tau = \alpha h / c_s$	Parameter of relaxation		
$\alpha = 0.1$	Tuning coefficient		

Couette flow: mean (averaged) and friction (wall) values

Re = $\rho_0 (U_0/2) (L_y/2)/\mu_0$	Reynolds number for initial cond.		
$\operatorname{Re}^{m} = \left(\rho^{m} (U_{0}/2)(L_{y}/2)/\mu^{m})\right _{y=0}$	Averaged Reynolds number		
$\operatorname{Re}_{\tau} = (\rho^{m} u_{\tau} (L_{y}/2)/\mu^{m}) _{y=0}$	Wall Reynolds number		
μ^m u^m_x $ ho^m$	Time-averaged viscosity, velocity and density		
$u_{\tau} = ((\tau_{\omega} / \rho^m)^{1/2}) _{\gamma} = 0$	Wall velocity		
$l_{\tau} = (\mu^m / (\rho^m u_{\tau})) \Big _{y=0}^{\tau}$	Wall length		
$\tau_w = \left(\mu^m (du_x^m/dy)\right) _y = 0$	Shear stress on the wall		
$u_{+}=u_{x}^{m}/u_{\tau}$	Non-dimensional velocity		
$y_{+} = y/l_{\tau}$	Non-dimensional (wall) coordinate		
$C_f = 2\tau_w / (\rho^m (U_0 / 2)^2)$	Friction coefficient		

Couette flow: laminar and turbulent cases

Regim	Re	Re ^m	Re _r	$C_{_f}$
Laminar	300	286	17	0.007
Turbulent	3000	2804	153	0.0059
Turbulent	4250	3994	198	0.0049

Turbulent Couette flow, Re=3000: temporal evolution of gas kinetic energy

$$E_{kin}(t) = \sum_{i=1}^{Nx-2} \sum_{j=1}^{Ny-2} \sum_{k=1}^{Nz-2} \frac{1}{2} \rho_{ijk}(t) (u_{xijk}^{2}(t) + u_{yijk}^{2}(t)) + u_{yijk}^{2}(t) + u_{zijk}^{2}(t)) \cdot h^{3}$$

Total number of time steps: $n_t = 8 \cdot 10^5$

Total physical time: $t = 0.475 \ s$

Total machine time: 160 hours

32 processing nodes of K-100 (Intel Xeon X5670)

Turbulent Couette flow, Re=3000: downstream velocity profile

Mean downstream velocity:

$$u_{x}^{m} = \frac{1}{n_{t2} - n_{t1} + 1} \begin{pmatrix} n_{t2} \\ \sum_{i=1}^{t} u_{i} \\ n_{i} = n_{t1} \end{pmatrix}$$

Turbulent Couette flow, Re=3000: mean downstream velocity profile in wall coordinates

Non-dimensional mean velocity:

$$u_{+}=u_{x}^{m}/u_{\tau}$$

Wall friction velocity:

$$u_{\tau} = ((\tau_w / \rho^m)^{1/2}) |_{y=0}$$

Non-dimensional length: $y_{+} = y/l_{\tau}$

Wall friction length:

$$l_{\tau} = \left(\mu^m / (\rho^m u_{\tau}) \right) \Big|_{y=0}$$

Shear stress on the wall: $\tau_w = (\mu^m (du_x^m/dy))|_{y=0}$

Turbulent Couette flow, Re=3000: turbulence intencities

$$u'_{x} = \left[\frac{1}{n_{t^{2}} - n_{t^{1}} + 1} \begin{pmatrix} n_{t^{2}} \\ \sum_{i=1}^{2} u_{x}^{2} \\ n_{t} = n_{t^{1}} \end{pmatrix} - (u_{x}^{m})^{2} \right]^{1/2} \text{, same for } u'_{y} \text{ and } u'_{z}$$

Turbulent Couette flow, Re=3000: turbulence intencities, wall coordinate

Turbulent Couette flow, Re=3000: 2D cross-section in the middle of domain, downstream velocity and pressure contours, cross velocity streamlines

Turbulent Couette flow, Re=3000

Turbulent Couette flow: coherent vortices

Turbulent Couette flow, QGD-based simulation, Re=3000, iso-surfaces of Q criterion t=0.474 s

Coherent vortices are visualized by the Q criterion:

$$Q = \frac{1}{2} (\Omega_{ij} \Omega_{ij} - S_{ij} S_{ij})$$

 S_{ij} and Ω_{ij} are respectively the symmetric and antisymmetric parts of the velocity-gradient tensor $\partial u_i / \partial x_j$

Turbulent Couette flow, Re=4250: downstream velocity profiles

Laminar Couette flow, Re=300: temporal evolution of gas kinetic energy

Couette flow: skin-friction coefficient as a function of mean Reynolds number

Mean Reynolds number: $\operatorname{Re}^{m} = (\rho^{m}(U_{0}/2)(L_{y}/2)/\mu^{m})|_{y=0}$

Skin-friction coefficient: $C_f = 2\tau_w / (\rho^m (U_0 / 2)^2)$

Shear stress on the wall: $\tau_w = (\mu^m (du_x^m/dy))|_{y=0}$

Conclusions

Quasi gas-dynamic (QGD) equations may be regarded as a new approach in simulation of turbulent gas dynamic flows.

The additional dissipative terms in QGD system serve to model the effects of the unresolved subgrid scales.

QGD system provides a uniform simulation of laminar and turbulent regimes in free-stream flows and near-boundary flows.