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– The objective of the present work is to show the  possibilities of 

the so-called Quasi-Gas Dynamic (QGD) equations for laminar-

turbulent transition in compressible heat-conducting gas flow 

simulations.  

 

– These equations were developed by Chetverushkin, Elizarova, 

Sheretov and co-workers and were nicely presented in the talk of 

B.N. Chetverushkin in the morning session 

 

– QGD equations can be obtained basing on Navier-Stokes Eqs. 

They have additional smoothing or regularization.  

 

– QGD equations can be used in different areas, including Rarefied 

Gas Dynamics, shock-wave flow simulations and in turbulent flow 

simulations 

 



Quasi-gas-dynamic equations as an extension 

of Navier-Stokes system 

 



Navier-Stokes equations 
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Averaging of Navier-Stokes system over a small time 
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Example – continuity equation 

Here we introduce the notations for the additional velocity and mass flux: 
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For momentum and total energy equations additional        - 

terms are calculated using Euler equations and differential 

identities 
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Properties of QGD equations 

– QGD  Eqs have the form of conservation laws, including entropy 

theorem and angular momentum conservation. 

– Prandtl  boundary layer limit is obtained. 

– Common exact solutions with the NS system for a number of 

classical problems (e.g., Couette flow, barometric distribution). 

– A number of theoretical results – Petrovski parabolicity, linearased 

stability of equilibrium solutions, ets.. (Yu.V. Sheretov, 

 A.A. Zlotnik,..) 



Discretization and numerical algorithm 

 

 



Explicit-in-time finite-difference scheme with central 

differences approximation for all space derivatives 
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Benefits of QGD equations 

– Additional dissipative  -terms act as a “built in” regularization that 

contributes to the stability of the algorithms.   

– Allows using simple and efficient algorithms for computing liquid 

and supersonic-subsonic gas flows: 

• Space-derivatives, including those appearing in convective terms, are 

approximated by centered finite differences  

• Suited to unstructured grids 

• Explicit-in-time (conditionally stable) 

• Suited to unsteady flows 

• Facility of parallelization 

 

•             regularization parameter is related with grid step h 

and local sound velocity c  

•                                       = h/c  
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– Computations were carried out on highly-parallel computers 

Keldysh-100 and BlueGene/P of the Russian Academy of Sciences. 

 

– A parallel variant of the numerical algorithm was based on a 

decomposition of the computational domain by planes x = cste.  

 

– MPI standard was used to allow portability between computers. 

 

– For the problem under consideration, parallelization results in a 

linear efficiency increase with increasing the number of nodes. 

 

– Computer Keldysh-100 is approximately 10 times more efficient 

than BlueGene/P for an identical number of active nodes. 

 

Parallel computing 



Grid step h, number of points 

N: 

         1                   200 

         0.5                400 

         0.25              800 

         0.125            1600 

         0.0625          3200 

         0.03125        6400 

Coefficient : 

                       0.02 

                       0.10 

                       0.50 

                       1.00                              

Sod problem, strong discontinuity decay 



        

   Shu-Osher problem 

  

Interaction of shock and entropy waves, grid convergence 

γ = 1.4,    α = 0.2,   β = 0.4 
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– Relating the value of τ  to the space-grid step h as  ~h / c , where c 

is the local sound velocity, we can consider the associated 

viscosity as an original variant of sub-grid dissipation in LES 

models, that averages the fluctuations of flow parameters on a 

time-space scale depending on discretization. 

– This sub-grid dissipation differs from the Smagorinsky viscosity, 

as the -terms have another mathematical structure and additional 

terms appear not only in the momentum and energy equations, but 

also in the continuity equation. This latter property models the 

turbulent mass-diffusion, which is inherent to turbulent mixing. 

– Along a wall, the τ-terms vanish. 

 

Quasi-Gas Dynamic equations for turbulent flows 

 

• = h/c  
•accounts for subgrid   dissipation 

• sound velocity  c is estimated locally 

• h is the grid resolution  

• is an empirical coefficient  



Numerical simulation of Taylor-Green flow 

The evolution of the single-vortex flow, defined  at the initial time as the 
Taylor-Green vortex may be one of the simplest flow for which a laminar-
turbulent transition can be observed numerically. This process includes two 
stages  

– large scale vorticities break into smaller ones in laminar regime 

- after the time point corresponding to the maximum dissipation rate vortex 
decay leads to a turbulent energy cascade 
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Taylor-Green flow: problem formulation 

LzyxL ,,

016.0L
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Computational domain: 

Boundary conditions are periodic 

for X, Y, Z 

Innitial conditions :  

Teylor-Green vortex 

Working gas is nitrogen N2  

                with initial temperature 

Mach number:  

0Sc - sound velocity in nitrogen 

with initial temperature 

Reynolds number:  

0
- viscosity of the nitrogen for 

initial temperature 



Re=100 evolution of iso-surfaces of z-component of vorticity 

yuxuVz xy //2.0Vz 2.0Vz



Re=100, kinetic energy and dissipation rate, grid convergence 



Re=280 evolution of iso-surfaces of z-component of vorticity 

yuxuVz xy //2.0Vz 2.0Vz



Re=280, kinetic energy and dissipation rate, grid convergence  



Re=1600, evolution of iso-surfaces of z-component of 

vorticity 
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yuxuVz xy // yuxuVz xy //

yuxuVz xy //
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Re=1600, kinetic energy and dissipation rate, grid convergence 



Spectrum of kinetic energy, Kolmogorov-Obukhov law 



Kinetic energy and dissipation rate, tuning coefficient 

convergence   (Re=1600) 



Comparison of dissipation rate evolution for Re=100, 280 and 1600 



Symmetry of the numerical solution the 

conservation of the flow symmetry is related with the 

conservation of the invariants – helicity (in 3D) and 

enstropy (2D), that are fundamentaly related with the 

symmetry of the flow 

Re=1600 Re=100 
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[3] J.B. Chapelier, M. De La Llave Plata, F. Renac, E. Martin. Final abstract for ONERA Taylor-

Green DG participation. 1st International Workshop On High-Order CFD Methods. January 7-

8, 2012 at the 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee 



Couette flow: problem formulation 
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Initial  
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Solid walls, 



Couette flow, gas-dynamic parameters for nitrogen  

 J/(kg·К). Gas constant 

specific heat ratio for nitrogen 

Prandtl number 

 К Initial temperature 

Temperature power-law 

 kg/(m·s) Viscosity coefficient for  

Coefficient in temperature power-law 

 m/s Velocity of the upper wall 

Sound velocity 

  m/s Sound velocity for initial conditions  

Mach number for initial conditions 
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Couette flow: computational parameters 

 м Channel length 

 м Channel height – the distance between solid 

walls 

 м Channel width 

Space computational grid 

 м Computational grid step 

 с Time step 

Courant number 

Parameter of relaxation 

Tuning coefficient 
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Couette flow: mean (averaged) and friction (wall) values 

Reynolds number for initial cond. 

Averaged Reynolds number 

Wall Reynolds number 

Time-averaged viscosity, velocity and 

density 

Wall velocity 

Wall length 

Shear stress on the wall 

Non-dimensional velocity 

Non-dimensional (wall) coordinate 

Friction coefficient 
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Couette flow: laminar and turbulent cases 

Regim 

Laminar 300 286 17 0.007 

Turbulent 3000 2804 153 0.0059 

Turbulent 4250 3994 198 0.0049 

Re mRe Re
fC



Turbulent Couette flow, Re=3000:  

temporal evolution of gas kinetic energy 
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Turbulent Couette flow, Re=3000:  

downstream velocity profile 
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Turbulent Couette flow, Re=3000: mean  

downstream velocity profile in wall coordinates 
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Turbulent Couette flow, Re=3000:   

turbulence intencities 
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Turbulent Couette flow, Re=3000:   

turbulence intencities, wall coordinate   



Turbulent Couette flow, Re=3000:   

2D cross-section in the middle of domain, 

downstream velocity and pressure contours, 

cross velocity streamlines   



Turbulent Couette flow, Re=3000   



Turbulent Couette flow: coherent vortices  

Coherent vortices are visualized  

by the Q criterion: 
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Turbulent Couette flow, Re=4250:  

downstream velocity profiles 



Laminar Couette flow, Re=300:  

temporal evolution of gas kinetic energy 



Couette flow: skin-friction coefficient as a function  

of mean Reynolds number 
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Conclusions 

      Quasi gas-dynamic (QGD) equations may be regarded 

as a new approach in simulation of turbulent gas dynamic flows. 

 

The additional dissipative terms in QGD system serve to model 

the effects of the unresolved subgrid scales. 

 

QGD system provides a uniform simulation of laminar and 

turbulent regimes in free-stream flows and near-boundary flows. 

 

 


