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Sphere in the stratified fluid  
Foundation of the problem 

grid1=(120x60x120) 

grid2=(240x60x120) 

10 points inside of the 

boundary layer 

 

 

 

R∞= 15 D  53 D 

R∞ 

D –sphere diameter 



Re = U0D/  

Fr = U0/ND 

C= /D  

Sc = v/ks  

p & s – pressure & salinity perturbations, v=(vx, vy, vz) - 

velocity vector, U0 - free-stream velocity,  

g – acceleration of gravity, 

 & N - buoyancy scale and frequency,  = g/N2 

 - kinematic viscosity, ks - diffusivity coefficient  

Navier-Stokes equations in Boussinesq 

approximation 

ρ(x, y, z) = ρ0(1 - x/(2C) + s)   - density, 



Numerical Method SMIF 

• I  

 

• II  

 

• III 
 

 

• IV 

(solved by Conjugate 

Gradients Method ) 





(How to approximate the convective terms of the equations ?) 
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The differential approximation is the following: 
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So all the schemes of the second order of accuracy 

O(τ2, h2) with zero scheme viscosity   (νсх = [1+2(α-β)-

C]∙(Ch2)/(2τ) = 0) in  (α, β)- plane should be on line  

 2

1 С
.  

 Taking into account that for explicit schemes 

0 ≤ С ≤ 1, we have that  all the schemes of the second 

order of accuracy with  νсх = 0 are in the belt between 

l0 = {(α, β):  α = β-0.5} и l1 = {(α, β):  α = β} (see fig). 
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1 С

l0 = {(α, β):  α = β-0.5} 

l1 = {(α, β):  α = β}.  

νsch = 0 
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Monotonous Scheme :  

The finite-difference scheme is monotonious, if from 

the following condition: 
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Let u ≥ 0, then:  
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Let  for any i,   then in order to 

we demand the positiveness of all items. 

 and  , then  

, if: 
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in other words, if   (3-С)/4 – 1/(2C) ≤ β ≤ 0.                      (1)  
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, if   (1-C)/2 ≤ β ≤ (3-С)/4.                          (2) 

Let  

 or  
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Similar we can check, that at u ≥ 0   from  

 follows that   and at  
 we have (2), and at  
 

 -  (1).  
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[A, B] and [E, D] - two  

segments of monotony  

[A, B] - MCDS  

[E, D] - 

MUDS  



Let us check that the ranges of monotonisity of MCDS and 

MUDS have a non-empty intersection.  

For u ≥ 0: 

12

1

1 1
2

)1(
3 ii

n

i fС
СС

СfСf

1
2

)1(
)1(3 ii f

СС
CfCCCC

,1431221 iiii fkfkfkfk

Similar at u < 0 we will have (1) and (2) at corresponding 

signs of ∆f  and ∆2f.  
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k3 = C (2 – C - 3β) change the sign:    

                                          at   (1-C)/2 ≤ β ≤ (2-С)/3    k3 ≥ 0. 

ED:   

k1 ≥ 0, k3 ≥ 0, k4 ≤ 0, k2 = 3Cβ + (1 – C) (1 – C/2) change the 

sign :    at  -(1 – C) (1 – C/2)/(3C) ≤ β ≤ 0    k2 ≥ 0  

It is possible to conclude that the ranges of monotonisity of 

MCDS and MUDS from segments B1В and ЕE1 have an 

empty intersection.  
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AB1:    k3 ≥ 0, k4 ≥ 0 and 0f
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The MCDS and MUDS are monotonious simultaneously.  



 It means that   ∆fi+1 = ∆fi   or   ∆2fi+1 = 0.  

Therefore we can use the following switch condition between 

MCDS and MUDS:    (u∙∆f∙∆2f).  

At δ = 1 the MCDS and MUDS are monotonious at any 

1,0С
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f

f
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At (u∙∆f∙∆2f) ≤ 0 we use  MCDS from AB1,  

At  (u∙∆f∙∆2f) > 0 – MUDS from E1D.  

1
6

1 2С At  

we have one non-

monotonous scheme of 

the third order of  

approximation  

(point Т).  



The first order - 1- O(τ, h) (Godunov S.К.): 

 α = 0, β = 0,   
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1
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The second order –2- O(τ2, h2)-  Маc-Cormak: 

 α = 0, β = 0.5 (1 – С),  
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 The third order –3- O(τ2, h3) – Kholodov А.S.– 

nonmonotonous: 

 α = -0.25 (1 – С), β = 0.25 (1 – С), 
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The scheme of the third order of accuracy –4- O(τ3, h3): 

 α = (С2 – 1)/6, β = (1 – С) (2 – С)/6, 
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The scheme of the third order of accuracy  O(τ3, h3): 

 

 

 α = (С2 – 1)/6, β = (1 – С) (2 – С)/6, 
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The hybrid scheme of the second order  O(τ2, h2) with zero 

scheme viscosity  and monotonous: 

 at  (u∙∆f∙∆
2
f ) ≤ 0   МСDS:   α = 0, β = 0.5 (1 – С), 
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 and at  (u∙∆f∙∆
2
f ) > 0   МUDS:   α = -0.5 (1 – С), β = 0, 
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The solution of Cauchy problem  

 

ft + u fx = 0,    u = const = 1, 
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at t = 10 and t= 15, 

 

С = u τ/h = 0.75,   h = 0.001   see in figs. 



C=0.75,  t=10  

 



C=0.75,  t=15  

 
C=0.75,  t=15 1 



C=0.95,  t=10  

 



C=0.95,  t=15  

 



Speed up for the 

switch Myrinet-2000 

(MVS-1000 based on 

Intel Xeon (2.4 GHz) 

processors ) for 

computational grid 

80x50x100.  

CODE PARALLELIZATION 
 

The code has been parallelized by using domain 

decomposition in the radial direction. The computational 

domain has been divided into spherical subdomains 

corresponding to the parallel processor units.  



The characteristic equation for the eigen-values of the velocity 

gradient tensor  G=Vi,j : 023 TQP

The discriminant of this equation:   Δ = (Q/3)3 + (T/2)2 
The condition Δ>0 at some point in a flow means that  

two eigen-values  σ1,2 = α ± i β     of   G   are complex and  

the local streamline pattern is closed (at α = 0) or spiral in a 

reference frame moving with this point.  β = Im(σ1,2)  is the 

angular velocity of this spiral motion. 

A vortex core is a connected regions with β > 0 

Let us consider a local stream line 

pattern around any point in a flow 

in a reference frame moving with 

the velocity of that point:  
2

xxGx
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β – visualization  

M.S. Chong, A.E. Perry and B.J. Cantwell, Phys. Fluids, A 2 (5), 765-777 (1990).  



Jeong J., Hussain F. On the identification of a vortex. J. Fluid Mech., 1995, V. 285. 

λ2 –visualization:  



Режимы течения: 
I) 20.5 < Re  200 –  

      однонитевой след  

II) 200 < Re  270 –  

      двухнитевой след  

 

III) 270 < Re  400 – периодический отрыв верхнего края 

                                                                    вихревой оболочки 

   a) 270 < Re  290 

     

   b) 290 < Re  320   

     

   c) 320 < Re  400   

               

   d) 360 < Re  400 – 

 регулярное вращение вихревой оболочки 

λ2 = -10-5  

λ2 = -2·10-5  



3D Circular Cylinder.        Foundation of the problem 



3.75D -  

Re=230, Mode A, Isosurfaces of the projection 

of the vorticity on            the x (streamwise) axis, L=7.5D  

The values of the maximum phase difference along the span are 

approximately equal to 0.1-0.2 T, where T is the flow period.  

the length of the periodical structures along the axis of a cylinder. 



0.83D 

Re=320, Mode B, Isosurfaces of the projection 

of the vorticity on the x (streamwise) axis, L=7.5D 

The values of the maximum phase difference along the span are 

approximately equal to 0.015-0.030 T, where T is the flow period.  
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Conclusions 
1. The hybrid (second order of accuracy, possesses by zero 

scheme viscosity and monotonic) scheme has been 

constructed on the basis of MCDS and MUDS for 

approximation of the convective terms of the full CFD-

equation.  

 

2. The efficiency of this scheme have been demonstrated on 

the example of simulation of 2D-3D transitional flow 

regimes in the wake of  a sphere and a circular cylinder. 
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