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1 Introduction 
 1.1 The Taconis oscillation 

Experimental studies 
Taconis et al. (Physica, 1949) 

Yazaki et al. (J.Low.Temp.Phys., 1980) 

Yazaki et al. (PRL, 1987) 

   

Theoretical studies 
Kramers (Physica, 1949) 

Rott (Z.Angew.Math.Phys.,1969,1973) 

Sugimoto et al. (Phys. Fluids, 2007-2008) 

Shimizu and Sugimoto (J. Appl. Phys., 2010) 

 

The Taconis oscillation: spontaneous thermoacoustic oscillations 
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the energy conversion:  heat        acoustic energy 

                                             thermoacoustic engines 

                                             refrigerators  



experiments by Yazaki et al.  

They observed  

a standing wave  

for different ξ’s and  

different temperature ratios TH / TC.   
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1.2 Experimental study 

T.Yazaki, A. Tominaga and Y. Narahara, J. Low Temp. Phys. 41, 45(1980)  



a standing wave 

the lowest frequency mode 

the second frequency mode  

critical temperature ratio of exp. by Yazaki et al. 

3.0:ratiolength part  hot/cold experiments by Yazaki et al.  

the lowest freq. mode 

(antisymmetric) 

the second freq. mode 

(symmetric)  

horizontal axis: radius/ thermal boundary layer thickness 

vertical axis: temperature ratio TH / TC 

T.Yazaki, S. Takashima and F. Mizutani, Phys. Rev. Lett. 58, 1108(1987)  

stability curves : the upper region → oscillations 



1.3 Objectives 

1. to present how fluid particles move in different modes of the   

thermoacoustic oscillations in a closed cylindrical tube  

2. to show how thermal quantities change along the particle path 

3. to present the work done by fluid particles in different modes 



TH=300K  TC=20K ;  TH/TC=15 

the fluid in the tube： gaseous helium 

 

variables : normalized with L,  

a0=1004m/s and ρ0=0.167kg/m3 
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a closed cylindrical tube 
r0 

-tube length                 

L=0.28m 

-tube radius 

  r0=0.76mm 

-temp. gradient  

  Δl=7.5mm 

  

r0/L=2.7×10-3 

the tube : very narrow 

the flow : axisymmetric 

-length ratio of 

 hot part to cold part 

         the length ratio   0.52.0  

finite temperature gradient 

2 The governing equations and Numerical method 
 2.1 Geometry   



T
SRFEQ

























)(

Re

1

zrzrt


























r

r

r

r

upe

wu

pu

u

r

)(

2







E


























wpe

pw

wu

w

r
r

)(

2





F























4

0

R

rz

rr




R























4

0

S

zz

rz




S
























0

0

)(
Re

1
0

zzrrp 
T

)
3

2

3

2

3

4
(

z

w

r

u

r

u
r rr

rr








 

)(
r

w

z

u
r r

rz








 

)
3

2

3

2

3

4
(

r

u

r

u

z

w
r rr

zz








 

r

a
rwuR rzrrr






2

4 

z

a
rwuS zzrzr






2

4 

)](
2

1
)[1( 222 wu

e
a r 




)1Pr( 





k



wur ,

p

e

variables : normalized with L（Tube length）,  

a0=1004m/s and ρ0=0.167kg/m3 

（Helium, 100kPa, 300K） 

γ=5/3, Pr=0.68 

μ(T)=μ0(T/TH)β, k(T)=k0(T/TH) β,  β=0.647 
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2.2 Basic equations Axisymmetric compressible Navier-Stokes eq. 

: density 

: velocities 

: total energy density 

: pressure 



- The block pentadiagonal matrix scheme   

Time development: 2nd-order accurate three-point    

                                 backward scheme 

 

 

The approximate factorization method  

 

 

 

 

 

 

Convective terms: 4th-order accurate central differencing 

Viscous terms: 2nd-order accurate central differencing  

The explicit 4th-order artificial dissipation  
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2.3 Numerical method 



j=jmax(=36) 

 [ r  ] 

300 × 36 
- Grid system Axis 

i=imax(=300) 

  [ z ] 
Tube wall 

clustered near the wall 

- Boundary conditions 

[on the wall] non-slip and isothermal boundary conditions,    

  and no pressure gradient in the normal direction of the wall 

 

 

 

 

 

[on the axis] symmetric boundary conditions 

 

 

1,0 and at    0 0  zrrwur

0,1zat    0/  zp

0at    0/ rrrp 

1,0 and at    0  zrrTT wall

0at    0  rur

0at    0///  rrprwr
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*How to obtain steady states  

the initial state: quiescent and uniform at TH =300K                                                             

                                                              with p0 =1.2×105Pa  

*at ξ = 0.2,  

   cooling of the central region from 300K to 20K with 5000000 steps     

*thereafter TC =20K fixed : TH /TC =15   

*ξ is changed by changing the positions of finite temperature gradient. 

   ξ : from 0.2 to 5.0, then from 5.0 to 0.2  

        with Δ ξ = 0.02 or 0.1 

*At each ξ , we continue time integration until  steady state is obtained. 

(more than 500 cycles) 



3 Results 

3.1 Pressure 

> pressure amplitude at the tube end v.s. length ratio ξ 

> temporal evolution of the spatial distribution of the pressure 

3.2 Temporal evolution of the flow field 

> temperature, axial velocity 

3.3 Tracing of fluid particles 

> paths of  fluid particles 

> work done by a fluid particle  
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ξ 

□：0.2 → 5.0 

◇：5.0 → 0.2 

pressure amplitude at the tube end v.s. length ratio ξ 

measured at  

z = 2.8×10⁻3 L  

oscillations ξ = 0.26 - 4.4 

no oscillations 


cold part length 

 hot part length 

TH=300K, TC =20K, θ =15: initial pressure p0 =1.2×105Pa 
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hysteresis 



temporal evolution of the spatial distribution of the pressure on the axis 

ξ = 1.0 （fundamental mode） 

antisymmetric 

ξ = 0.5 （shock wave mode） ξ = 0.4 （2nd mode） 

symmetric 

□：0.2 → 5.0 

◇：5.0 → 0.2 

radial dependence: negligible 

Three modes are observed. 



pdVdUTdS 

U : internal energy 

T : temperature 

S : entropy 

p : pressure 

ρ : density 

V :specific volume 

Tracing of fluid particles 

> how fluid particles move in a closed tube 

> work done by fluid particles during one period  

    for the second mode (ξ = 0.4) and the fundamental mode (ξ =1.0)  

dt
Dt

DV
p net work done by a fluid particle during one period 

 positive : prime mover (heat → work) 

 negative : heat pump (work → heat) 

the first law of 

thermodynamics 
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ξ = 0.4 （2nd mode） 
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prime mover (heat→work)  

heat pump  (work→heat)  

~no net work 
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temperature 
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pressure distribution 

wall 

t=0 
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ξ = 1.0 （fundamental mode） temperature 
gradient 

prime mover (heat→work)  heat pump (work→heat)  
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5. Summary 

• The flow field in a closed cylindrical tube is simulated by solving the axisymmetric 

compressible Navier-Stokes equations.  

• The spontaneous thermoacoustic oscillations of a gas in the tube subject to the 

temperature gradient is examined.  

• the wall temperatures: fixed TH=300K,TC=20K: TH/TC=15  

• the length ratio  : changed between 0.2 and 5.0.  

1. Tracing fluid particles   

    In the second mode, they moves in the vicinity of the starting point. 

    In the fundamental mode, their displacement is large.  

2. The p-V diagram or the temporal evolution of pDV/Dt shows that they serve    

    as a prime mover or a heat pump. 

    The energy conversion is observed.  

 
 



1. The second mode       

• high temperature region(near the tube end) : work → to heat 

• low temperature region : ~ no net work 

• near the finite temperature gradient :  

    - near the wall : work → heat 

    - otherwise : heat → work 

2. The fundamental mode 

• near the tube end: work → heat 

• fluid particles moving near the finite temperature gradient:  

     during one cycle  

      - near the wall : work → heat 

      - near the axis : heat → work 


