JAPAN-RUSSIA WORKSHOP ON SUPERCOMPUTER MODELING, INSTABILITY AND TURBULENCE IN FLUID DYNAMICS (JR SMIT2015) March 04, 2015, Keldysh Institute for Applied Mathematics RAS, Moscow, Russia

SIMPLE *A POSTERIORI* LIMITER TOWARDS FLOW SIMULATIONS WITH 64 TIMES HIGHER RESOLUTION

<u>K. Kitamura</u> (Yokohama National University, Japan) and <u>A. Hashimoto</u> (JAXA, Japan)

Present (Compressible) CFD

Recent Aerodynamic Simulations

Ares I: Cart3D – Cartesian, Automated (NASA Ames)

Brazilian Satellite Launch Vehicle: Unstructured

Bigarella et al., *JSR*, 2007.

Ballute: FUN3D – Tetra, Unstructured (NASA

Langley)

Gnoffo et al., AIAA-2006-3771, 2006.

Epsilon Launch Vehicle: LS-GRID/ FLOW – Body-Fitted Cartesian (JAXA)

Kitamura et al., *JSR*, 2013.

Unstructured, spatially 2nd-order: Still in the "mainstream"

Schematic of One Timestep in Finite Volume Method: Spatially 2nd-order (or higher)

Computational Methods

- Governing Eqs.: 2D compressible Euler/N-S Eqs.
- Spatial Discretization: Cell-centered FVM
 - Gradient: MUSCL (K= -1 or 1/3: 2nd order) or Green-Gauss
 - Slope Limiter: minmod, MLP, or none
 - Inviscid Term (Numerical Flux): SLAU2 or AUSM+-up
 - Viscous Term: Central Difference (2nd order)
- Temporal Evolution: Runge-Kutta (2 or 4)

(Conventional, a priori) Limiter

- Spatial Accuracy: usually 2nd-order or higher
- At Discontinuities (e.g. Shocks): Over/Undershoot
- "Limiter \u00f6" lowers the order of accuracy a priori, where the computation is "likely" to get unstable

Shock

 $M_{\infty} = 0.8$

= Too much Limiting ? (ϕ =0)

Dr. Hiroaki Nishikawa, one of *FUN3D* code developer, at National Institute of Aerospace:

"We **don't use a limiter** for transonic simulations on a very smooth and beautiful mesh."

(Private Communication, 2013)

(Conventional, *a priori*) Limited v.s. Unlimited Computations

AUSM+-up, Viscous (Re=200), 2nd order in time and space

(Conventional, *a priori*) Limited v.s. Unlimited Computations

(If stable,) 4x4=16 times equivalent resolution!

a posteriori Limiting Procedure

Clain et al., JCP, 2011

- Compute Higher-Order (H.O.) Candidate Value q_{i,i}
- Then, Limiting: whether or not to adopt q_{i,i}
- **q**_{i,i} has no problem -> Adopted
- q_{i,j} is problematic -> Re-compute q_{i,j} with Lowerorder (L.O.), more stable method

MOOD (<u>M</u>ulti-dimensional <u>O</u>ptimal <u>O</u>rder <u>D</u>etection)

do

- Get Candidate Value *q*_{i,j} with H.O. method
- Then, determine whether to adopt *q*_{i,i}
- **q**_{i,j} has no problem -> adopt
- q_{i,j} is problematic -> Go down to L.O. method and re-calculate q_{i,i}

end do

Repeated until satisfactory value is obtained (-> extra cost and code complexity)

Criteria: How to choose from/blend quality and qlim

- 1. Positivity: Density and Pressure must be positive $\rho_{i,j}^{unlim} > 0, p_{i,j}^{unlim} > 0$ _{Vi}
- 2. Discrete Maximum Principle (DMP): Density at cell-interface must fall between values of cells at both sides $min(\rho_{i}, \rho_{j}) < \rho_{i,j}^{unlim} < max(\rho_{i}, \rho_{j})$

or Pressure ratio: 2 or lower

Criteria: How to choose from/blend q^{unlim} and q^{lim}

- 1. Positivity: Density and Pressure must be positive $\rho_{i,j}^{unlim} > 0$, $p_{i,j}^{unlim} > 0$
- 2. Discrete Maximum Principle (DMP): Density at cell-interface must fall between values of cells at both sides $min(\rho_{i}, \rho_{j}) < \rho_{i,j}^{unlim} < max(\rho_{i}, \rho_{j})$

or Pressure ratio: 2 or lower

$$\boldsymbol{q}_{i,j} = \phi_{G} \boldsymbol{q}_{i,j}^{unlim} + (1 - \phi_{G}) \boldsymbol{q}_{i,j}^{lim}$$
Gnoffo's
Auxiliary Limiter
Gnoffo, AIAA-2010-1271
$$\boldsymbol{q}_{i,j} = q_{i} + \phi_{final} \nabla q_{i} \cdot (\mathbf{r}_{i,j} - \mathbf{r}_{i})$$

$$\phi_{final} = \phi_{G} + (1 - \phi_{G}) \cdot \phi_{lim}$$

: $\phi_{\rm G} = 0$

Numerical Example #1: Shu-Osher's Problem (1D Shock/Entropy-Wave Interaction)

2nd-order in space and time, SLAU2, CFL≈0.68 (t=1.8)

Equivalently 4 times resolution is achieved!

5.0

3.0 2.5

2.0

1.5 1.0

0.5

-SLAU2 (minmod) SLAU2 (PostLim Method 1)

-SLAU2 (Fine Grid), Ref.

4.5 4.0 3.5

Numerical Example #2: Viscous Shock Tube

Re=200, 250x125 cells, 2nd-order in space and time both, 200,000 steps (CFL \approx 0.52) (*t*=1)

Example #2: Viscous Shock Tube

Example #2: Viscous Shock Tube

Summary

- Simple *a posteriori* Limiter is proposed
 - 1. Get Candidate Values $q_{i,j}^{unlim}$ and $q_{i,j}^{lim}$ at One Time, without and with (*a priori*) Limiter, respectively
 - 2. Determine which to use, or blend them
 - 1D: 4 times equivalent resolution
 - 2D: nearly 4x4 times resolution
 - Computational Overhead: Approx. 20% / timestep (which doesn't matter, compared with improved resolution)
 -> Substantial Cost Reduction

Future Work

- Multidimensional Consideration: Ducros Shock Sensor, etc
- Avoid If-sentence -> Further simplification
- 3D practical problems: Transonic Buffet Simulation etc.

Brunet, AIAA 2008-4152

Acknowledgments

- **Dr. Hiroaki Nishikawa** at National Institute of Aerospace let us know of unlimited computation even when shocks are present. This motivated us to initiate the present work.
- Assoc. Prof. Ryoji Takagi and Assis. Prof. Taku Nonomura, both at JAXA, provided us with valuable comments.