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Introduction Bubble-shock interaction problem

Bubble-shock interaction problem

This problem is linked to the important tasks such as
1 Description of turbulent combustion in the jet engines
2 Interaction of fuel slurry with a shock wave of the piston in the

internal combustion engines
3 Sonoluminescence
4 Non-surgical removal of kidney stones (lithotripsy)

First experimental results appeared in 1960s (Rudinger et al.)

Since 1990 various works with the numerical simulation of the problem
have been produced.
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Mathematical model Euler equations

Euler equations of fluid dynamics

In this work Euler equation of the dynamics of inviscid fluid in 3D is used

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0, where

U = (ρ, ρu, ρv , ρw ,E )T is a vector of conservative variables,
E = ρ(ε+ 1

2(u2 + v2 + w2))is full energy
F(U) = (ρu, ρu2 + p, ρuv , ρuw , (E + p)u)T ,
G(U) = (ρv , ρvu, ρv2 + p, ρwv , (E + p)v)T ,
H(U) = (ρw , ρuw , ρvw , ρw2 + p, (E + p)w)T are eulerian fluxes,
p = p(ρ, ε) is equation of state which completes the system of equations

EoS of the ideal gas is used, so p = ρε(γ − 1).
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RKDG numerical method DG spacial discretization

Runge-Kutta discontinuous Galerkin (RKDG) method

Approximate solution Uh at every cell Lj is written in form of

Uh =
k∑

i=1

Ui (t)ϕi (x), where {ϕi (x)}ki=1are specified basic functions

Ui (t) = [u1
i (t), . . . , un

i (t)]T time-dependent vector, n = 5 for 3D flow

For every component we get

us
h =

k∑
i=1

us
i (t)ϕi (x); s = 1, . . . , 5
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RKDG numerical method DG spacial discretization

Then inserting this approximate solution Ui (t) for every
Lj , i = 1, k , l = 1, k , j = 1,N, m = 1, . . . , 5 and using the Divergence
theorem such a system is obtained

k∑
i=1

∂um
i (t)

∂t

∫
Lj

ϕiϕldV −
∫
Lj

(Fm ∂ϕl

∂x
+ Gm ∂ϕl

∂y
+ Hm ∂ϕl

∂z
)dV +

+

∫
δLj

ϕl (~Fmdydz + ~Gmdzdx + ~Hmdxdy) = 0,

where ~F, ~G, ~F are are Godunov-type numerical fluxes
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RKDG numerical method Time discretization

Runge-Kutta with the limiter

Considered ODE system can be represented in the form of

du(t)

dt
= Lu(t);

u(0) = u0;

In terms of the RKDG method the explicit Runge-Kutta method is
supposed to apply

limiting the solution in a special way after each RK stage
It is necessary to use the limiter for suppressing the spurious oscillations
near big gradients.

Various types of limiters have been developed (minmod, WENO etc)
Reconstruction of the coefficients is a local procedure
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RKDG numerical method Summary of the method

The results of the constructing

The method has the following features
Explicit with local stencil
High-order accuracy in time and space
Non-oscillating

Specifications in this work
3D Cartesian grid
2nd order in space and time RKDG method (with piecewise linear
elements)
Harten-Lax-van Leer-Contact (HLLC) numerical flux
Minmod limiter is used (TVDM)

Korneev, Levchenko (MIPT, KIAM) Bubble instability JRSMIT2015, Moscow 7 / 23



GPU implementation DiamondTorre

Impact of LRnLA algoritms using

LRnLA stands for ”Locally Recursive non-Locally Asynchronous”
Locality Take advantage of memory subsystem hierarchy, from on-chip

CPU cash and up to disk and network
Recursivity Application of “divide et impera” strategy for any situations

(computer architectures, numerical schemes, etc.)
non-Locality Optimized for distributed computations
Asynchrony Adaptable parallel computations on any levels

Structure is well-compatible with the GPU architecture
Effective GPU-CPU interaction
Close to the maximum performance

Korneev, Levchenko (MIPT, KIAM) Bubble instability JRSMIT2015, Moscow 8 / 23



GPU implementation DiamondTorre

Scheme of the domain calculation by the DiamondTorre
algorithm
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”Torres” are vectorized by z axis
”Torres” are calculated asynchronously by CUDA-blocks
Calculations inside a «window» of GPU memory, while the entire
domain is in CPU memory
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GPU implementation DiamondTorre

Performance results
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Performance gained on a single GPU NVidia GTX Titan is about
4.5 · 107 cells per second
Using 32GB CPU DDR the task with the domain of about 4 · 108 cells
can be calculated
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Numerical problem statement Dimensionless units

Units of measure

The dimensionless units are chosen connected with the radius of a bubble,
the background sound velocity and density by the following expressions

ρB

ρ0M a0

-2-1 0 1
-2
y

-1

0-1
1

x

0

-1

1
0

2 1
-1

0
1

z
-1 0 1 2

x = R0x̃ , y = R0ỹ , z = R0z̃ ;

u = a0ũ, v = a0ṽ , w = a0w̃ ;

t = t̃R0/a0;

ρ = ρ0ρ̃;

p = ρ0a2
0p̃ = p̃p0/γ.

The shock wave is characterized by the Mach number M of its front
moving velocity. The Atwood number At = ρB−ρ0

ρB+ρ0
is used for the

characteristic of the density inside the bubble.
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Numerical problem statement Different scenarios of the process

Schemes of the process at At < 0 (top) and At > 0 (bottom)

Niederhaus J. H. J. et al. A computational parameter study for the three-dimensional shock-bubble interaction //Journal of
Fluid Mechanics. – 2008. – V. 594. – P. 85-124.
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Numerical problem statement Choosing the grid size

Mesh-sensitive effects

The same task has been solved on several coarse or more fine grids.
Radius of a bubble contains a) 32, b) 64, c) 128, d) 256 cells

(a) (b) (c) (d)
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Numerical problem statement Initial and boundary condition

Numerical domain

Due to the symmetry one quarter of the whole domain can be considered,
introducing the boundary condition of symmetry on the diametrical
cross-sections.
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Results of the simulation, 448 × 448 × 896 cells High-density gas with At = 0.613, M = 5

θ component of vorticity, ωθ(x , y)

density, ρ(x , y)
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Results of the simulation, 448 × 448 × 896 cells High-density gas with At = 0.613, M = 5

Turbulent character of the process

There should be a movie
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Results of the simulation, 448 × 448 × 896 cells High-density gas with At = 0.613, M = 5
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Symmetry loss research Problem statement

The perturbation of the bubble surface is defined by
Y m

m (ϕ, θ) = α sin(mϕ) sinm(θ), α� 1, m = 4 . . . 128

Nx ×Ny ×Nz = 512× 256× 256 cells, time 0 ≤ t ≤ 2.4 (2 · 104 time steps)
is about 3 hours of computer time on 1 node of K100

Spectral analysis:

ρ(x , y , z , t)→ρθ(x , θ, t) = Σρr∆r/R0

→ρk(x , t) =
∣∣∣Σρθe−ikθ

∣∣∣
→Qk(t) = Σρk(x , t)∆x
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Symmetry loss research Results

Bubble’s shape after shock wave passing (t=1.8)
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Results Spectral analysis

Evolution of the initially perturbated modes
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Results Spectral analysis

Multiple modes’ arising
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Results Spectral analysis

Modes x-t dynamics
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Conclusion

Summary

GPU solver for 3D CFD problems based on the RKDG method and the
DiamondTorre LRnLA implementation algorithm is presented.

Bubble-shock interaction problem is investigated in high-density
regime and the axial non-stability is observed;
Spectral analysis of density distribution denote some special aspects of
the process as follows:

The initial perturbation is outstanding up to last stage,
on the initial stage increment grows with mode number,
multiple modes arise after shock wave passing throwg bubble.

Korneev, Levchenko (MIPT, KIAM) Bubble instability JRSMIT2015, Moscow 23 / 23


	Introduction
	Bubble-shock interaction problem

	Mathematical model
	Euler equations

	RKDG numerical method
	DG spacial discretization
	Time discretization
	Summary of the method

	GPU implementation
	DiamondTorre

	Numerical problem statement
	Dimensionless units
	Different scenarios of the process
	Choosing the grid size
	Initial and boundary condition

	Results of the simulation, 448 448 896 cells
	High-density gas with At=0.613, M=5 

	Symmetry loss research
	Problem statement
	Results

	Results
	Spectral analysis

	Conclusion

