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In a rotating stratified fluid, the interactions 
of isolated coherent vortices dominate the 
turbulence dynamics.

Background-1

Vertical motion is suppressed due to

the Coriolis force and stable stratification. 

Geophysical flows … 

Gulf Stream (numerical simulation, NASA) Instant value of the surface temperature in the 
north-east Pacific (The Earth Simulator by 
JAMSTEC)  



Background-2: Theoretical Approach

Two-dimensional point vortex systems
lowest order approximation of geophysical  

flows

 Many statistical studies 

have been made on purely 2D flows.

Statistical mechanics

L. Onsager (1949), 

negative temperature

D. Montgomery and G. Joyce (1974),  

canonical ensemble

Y. B. Pointin and T. S. Lundgren (1976),

micro canonical ensemble

Yatsuyanagi et al. (2005), 

very large numerical simulation (N = 6724)

The actual geophysical flows are 3D.
 The fluid motions are almost confined within 

a horizontal plane.

 Different motions are allowed on different 

horizontal planes. 

‘Quasi-geostrophic approximation’
(next order approximation)

⇒The QG-approximation confines the motion

in different horizontal planes.

N degrees of freedom

Point vortex

Spheroidal vortex

Ellipsoidal vortex

2N degrees of freedom 

Miyazaki et al. (2005)

Li et al. (2006)

3N degrees of freedom

Vortex models

J. C. McWilliams et al. (1994)

Coherent vortex structures

in QG turbulence

2-layer QG  point vortex system (2001)

by Mark T. DiBattista and Andrew J. Majda





Statistical Mechanics of QG Point Vortices

Numerical Computations using 

Special Purpose Computers

Theoretical Studies based on 

Maximum Entropy Theory

Quick review of

Mono-disperse System in an Infinite Domain

Mainly

Bi-disperse System in a Periodic Box

Objective



Quasi-geostrophic Approximation
2D Fluid motion (    : stream function)

Time-evolution under the quasi-geostrophic approximation

Potential vorticity

Point vortex systems : strength,  Ri : location

N ： Brunt-Vaisala frequency

f0 ： Coriolis parameter (f0 = 2Wsinq by at latitude q)

N ≒ 1.16×10-2 s-1,  f0 ~ 1/(24[h])  

Assuming d-function like concentration at 

N points, each vortex is advected by the 

flow field induced by other vortices.

← negligibly small 



Hamiltonian of QG N point vortex system (invariant)

Equations of Motion for Quasi-geostrophic Point Vortices

Canonical equations of motion for the i−th vortex

Computation on Special Purpose Computers: MDGRAPE-3, -DR, GRAPE9

Time Integration with LSODE (6 significant digits)

t : dimensionless time  (in units of the inverse potential vorticity)

Canonical Variables : X, Y

interaction energy Ri=

Rj=

Specifications 

Number of MFGRAPE-3 Chip : 2

Performance : 330 Gflops (peak)

Host Interface : PCI-X 64bit/100MHz

Power Consumption : 40 W

© http://mdgrape.gsc.riken.jp

 MDGRAPE-3, MDGRAPE-DR, GRAPE9



Maximum Entropy Theory for Mono-disperse System

Shannon entropy

Lagrange’s undetermined multipliers

Conserved 
quantities

Energy

Vertical distribution

Angular momentum

Numerical iteration

Two-dimensional point vortices by Kida ( J. P. S. J., 39(5)  (1975), pp.1395-1404 )

"0-inverse-temperature”



NegativePositive Zero inverse temperature

NegativePositive Zero inverseE : ＜ ＜

Potential vorticity

NegativePositive Zero inverse 
Maximum entropy states

Equilibrium States in an Infinite Domain

“End-effect” ・・・Tighter concentration near the lids

“Inverse-end-effect” ・・・Tighter concentration around the center 

Positive temperature (Low energy)

Negative temperature (High energy)



Mono-disperse System in an Infinite Domain

 Mono-disperse system of same sign: 

the radial distribution changes with the energy level: 

Positive, zero-inverse and negative temperature states

 Numerical results are consistent with the theoretical results

of the Maximum entropy theory

 It takes quite long to obtain a well developed numerical equilibrium

Bi-disperse system of mixed sign:

References ;

S. Hoshi and T. Miyazaki: Fluid Dynamics Research (2008)

T. Miyazaki, T. Sato, H. Kimura and N. Takahashi:

Geophysical and Astrophysical Fluid Dynamics (2011)

T. Miyazaki, T. Sato and N. Takahashi: Phys. Fluids (2012)

Quick summary



translational motion 

Counter-rotating : 

QG Bi-disperse Point Vortices：

We have to calculate under 
periodic boundary conditions

“Ewald sum”, as frequently used in Molecular Dynamics

Replacement of real-space  summation with equivalent 
summation in Fourier space under the periodic boundary 
conditions 

 Geophysical flows ・・・ Poly-disperse, Mixed sign, … 
Problem

Because the vortices diffuse towards infinity, 
They drift outside the secure calculation area 
of the MDGRAPE-3, GRAPE-DR and GRAPE9. 

Red : plus sign
Blue : minus sign



Numerical Results: Small System (N=1000)

 Initial structure : Two-dimensional

Time-evolution

X-Y

 Does the energy determine the equilibrium state uniquely ?

 Are all equilibrium states two-dimensional ?

Clustering

Equilibrium

X-Y X-ZE=6.413×10-3

E=2.424×10-3

Plus

Minus



Numerical Results: Small System (N=1000)

 Three-dimensional Initial Distribution

 Transition from three-dimensional to two-dimensional structure !

 Is there a unique equilibrium state at a specified energy level ?

 How does the system approach the equilibrium state ?

X-Y

E=2.714×10-3

X-ZX-Y

Time-evolution



Transient Behavior: Larger Systems
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Case C: 16 pillars

𝐸 = 2.426 × 10−3

𝑁+ = 4000
𝑁− = 4000
 Γ± = 0.062

Case B: Checkerboard

𝐸 = 4.428 × 10−3

𝑁+ = 4000
𝑁− = 4000
 Γ± = 0.062

Case D: Checkerboard

𝐸 = 4.536 × 10−3

𝑁+ = 8000
𝑁− = 8000
 Γ± = 0.031

𝐿𝑥: 𝐿𝑦: 𝐿𝑧 = 2𝜋: 2𝜋: 2𝜋

Case A: 3D dipole

𝐸 = 10.01 × 10−3

𝑁+ = 4000
𝑁− = 4000
 Γ± = 0.062



End States of Larger Computations

Strength

Plus

Minus

Case C

Case B

E = 4.428×10-3

E = 2.426×10-3

Initial

Case A

E = 10.01×10-3

End States: sn-sn dipole？

t = 150

t = 180

t = 158

Dipole Pair Moves

Not in Equilibrium



Density based Clustering Analysis

Quantitative analysis of 

transient process: 

DBSCAN method 

(Ester et al. 1996) 

A group of vortices is identified 

as a cluster, if its size is greater

than the minimum radius: 𝑟
and the number of vortices inside  

exceeds the minimum number: 𝑁𝑐

↑ Density based algorithm (Ester et al.)

↑ Used parameters





Number of Clusters

Case B
Case C
Case D

N = 813.95 t
-0.9753

t=14.0

t=50.0

t=155.0

t=0.0

1

10

10 100

N
um

be
r:

N

Time: t

Cluster number decays like t -1, which is slower than 

in McWilliams’ numerical simulations (t -1.25).

McWilliams et al.1999

Spectral Computation

McWilliams J C, Weiss J B and Yavneh I: J.Fluid Mech. 401 1-16, 1999



Cluster Shape

・Mean aspect ratio 𝑎 =
ℎ

𝑟
of clusters

increases with time (2 → 10).

・Mean radius 𝑟 remains constant.

・Mean height ℎ increases.

Clusters align vertically 

but never merge.

1

10

10 100

S
h
ap
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Time: t

Mean Aspect Ratio

Mean Height

Mean Radius

・Mean aspect ratio 𝑎 =
ℎ

𝑟
of clusters

remains constant (about 1.6).

・Mean radius 𝑟 increases.

・Mean height ℎ increases.

Clusters merge and align. 



Maximum Entropy Theory for QG Vortices of Mixed Sign

Shannon entropy

Lagrange's method of undetermined multipliers

，

Energy

Vertical vortex distributions

Variational equations 

Conserved quantities
Probability density function: PDF

Turkington .B & Whitaker .N : SIAMJ. Sci. Comput. (1996)

Funakoshi, S. & Miyazaki, T.,： Fluid Dyn. Res. 44 (2012)



Potential vorticity: 

 For Quasi-geostrophic point vortices

 Symmetric case: 

 The maximum entropy state satisfies the following equation: 

Mean Field Equation for QG Point Vortices 

Potential vorticity :

Stream function    :

Mean field equation

* ,

 It reduces to the Sinh-Poisson equation for 2D point vortices

Joyce & Montgomery : J. Plasma Phys. (1973)



Dual Problem of the Maximum Entropy Theory

Dual problem

Minimum

Conserved quantities

Where, 

 Assuming                                     are given, 

 determine                                by an iteration method.

Accuracy:

Turkington .B & Whitaker .N : SIAMJ. Sci. Comput. (1996)



E=6.413×10-3 E=2.424×10-3 E=2.714×10-3

E=6.413×10-3 E=2.424×10-3 E=2.714×10-3 

Comparison between Numerical and Theoretical Results

Theoretical results : initial potential vorticity numerical results

Numerical results by point vortex simulation

 Numerical equilibriums are Maximum entropy states ! 

caseA caseB caseC



 Diagram in E-S plane: Cases A～C

2D Exact Solutions

Cases A～C are on the same branch. 

“Sinh-Poisson Eq.” has Soliton solutions.

２π-Cubic box

Elliptic integral：

Elliptic function：

Case B :

Cases A～C are two-dimensional 

“sn-sn dipole”-type solutions.

 Stream function

Gurarie ＆ Chow : Phys. Fluids. (2004)



Other Maximum Entropy States ?

Numerical Results 

Initial vorticity guess Vortex type Vertical distribution: P(z)



Bifurcation Diagram in the E-S plane: 2D and 3D Maximum Entropy States

Tighter concentration 

near the vortex center 

at higher energy level

2D3D
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Transition to Maximum Entropy State

Box size: Lx : Ly : Lz = 2π : 2π : 2π



Entropy Growth
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＊Entropy Evaluation

𝐹± 𝒓 =
𝑛±

𝑁∆𝑉
=

𝑛±

(2𝜋)3

Shannon entropy grows 

with time and seems to 

approach the equilibrium 

value from below. 



Stability Analysis by Arnold’s Method

Conserved Quantities

variations of

to have the Mean Field Equation

First variation:

Stability cannot be proved in general

Equilibrium Disturbance

Second variation: ?

－



２D

3D
3D-dipole 3D-zonal 3D-quadrupole

Results of Stability Analysis

Less than 1 for ２D-dipole

and 2D-zonal: “Stable”

More than 1 for 2D-quadrupole: 

“Possibly Unstable”

More than 1 for any case : “Possibly Unstable”



Direct Numerical Simulations of QG equation

Continuous QG equation
：Viscosity

：Order of dissipation

Dissipation term

Fourier Modes (Quasi-Spectral Method)

Initial Equilibrium States
Wave number vector:

Adding small disturbances

4th order RK time marching

De-aliasing by 2/3 rule

3D-dipole

E＝6.40 × 10−3
3D-zonal

E＝6.40 × 10−3

① ②
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②

Initial state

Results of Direct Numerical Simulations of QG equation

After t= 10, the zonal 

structure becomes wavy 

and a quadrupole-like 

structure develops by t=60

A drastic deviation is 

observed after t= 40

nearly 2D pattern appears



Summary 

1. Clustering of vortices of like sign occurs (negative temperature state), 

and the equilibrium has two-dimensional dipole structure.

2. Shannon entropy increases and the number of cluster decreases like t-1.

3. The maximum entropy states are determined theoretically by solving the 

mean field equation. They coincide with the numerical end states.

4. Two- and three-dimensional maximum entropy states are found.

5. The two-dimensional sn-sn dipole solution has the largest entropy, which 

is the reason only this branch is found numerically. 

6. The two-dimensional sn-sn dipole and zonal flow solutions are found to 

be stable.

Thank you for your attention

• We investigate the statistical mechanics of bi-disperse quasi-

geostrophic point vortices numerically and theoretically. 
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Shannon Entropy

Entropy Growth in Numerical Simulations



 Real space

 Wavenumber space

 Self energy (Constant term)

Ewald Sum : Energy under periodic boundary conditions

 Energy (Hamiltonian)

Real space and image cells

Real space

Wavenumber space

Constant term

:  wavenumber vector ( h : integer vector ) 

Assume:                                  : Gaussian 

( [L-1] : scaling parameter)

[ for cubic cell      ]

)exp()( 22
2

3

rrF 














Canonical equations of motion

for the i−th vortex 



Influence of Aspect ratio: Lz / Lx = 0.5 and 4.0

Box size:

Lx : Ly : Lz = 2π : 2π : π Lx : Ly : Lz = 2π : 2π : 8π

Entropy increase of 3D solutionsEntropy decrease of 3D solutions



Two types of Zonal Flow for Ly / Lx = 0.9

Box size: Lx : Ly : Lz = 2π : 1.8π : 2π



Influence of Aspect ratio: Ly / Lx = 0.8

Box size:

2D zonal flow sn-sn dipole

Bifurcation for 

Ly / Lx = 0.9 at

E = 5.533×10-3

Bifurcation for 

Ly / Lx = 0.8 at

E = 9.603×10-3

Lx : Ly : Lz = 2π : 1.6π : 2π



Influence of Aspect ratio: Ly / Lx = 0.5

Box size: Lx : Ly : Lz = 2π : π : 2π



Influence of Aspect ratio: Ly / Lx = 0.9

2D zonal flow sn-sn dipole

Box size: Lx : Ly : Lz = 2π : 1.8π : 2π

3D zonal flow 3D dipole



Influence of Aspect ratio: Ly / Lx = 0.9, Lz / Lx = 4.0

Box size:

2D zonal flow sn-sn dipole

Lx : Ly : Lz = 2π : 1.8π : 8π

Bifurcation at E = 1.4×10-3

a



Influence of the Aspect Ratio (1)

Aspect ratio of the periodic domain:

Only zonal flow type



Influence of the Aspect Ratio (2)

Bifurcation point (3D)

Aspect ratio of the periodic domain:  

Ec≒5.6×10 -3

Bifurcation point (2D)



Transition from 3D zonal to 3D dipole type

E = 1.0000 ×10 -3

E = 0.4000 ×10 -3

zonal flow

transition

dipole type

Ec≒0.8×10 -3
E = 2.5000 ×10 -3

dipole type



Cluster Strength

・Number of point vortices

in a cluster increases.

・Share of point vortices 

inside clusters decreases.

100

1000

10 100

M
ea

n
 N

u
m

b
er

 o
f 
P
o
in

t 
V

o
rt
ic

es
: 

Time:

Case B
Case C
Case D

10

100

1 10 100

sh
ar

e:
 

Time:

Case B
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Case D

・Cluster size grows due to

vertical alignment.

・Some of point vortices are

emitted from clusters. 



スペクトル法による数値計算結果との比較

McWilliams et al.[2]によるス

ペクトル法の数値シミュレーシ
ョン結果

~𝑡−1.25にしたがって渦
数が減少

[2]McWilliams J C, Weiss J B and Yavneh I: J.Fluid Mech. 401 1-16, 1999
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Time:

Case B
Case C
Case D

N = 813.95 t
-0.9753

~𝑡−1.00にしたがってク
ラスター数が減少

本研究における
解析結果



スペクトル法による数値計算結果との比較

McWilliams et al.[2]によるス

ペクトル法の数値シミュレーシ
ョン結果

[2]McWilliams J C, Weiss J B and Yavneh I: J.Fluid Mech. 401 1-16, 1999

・平均半径がほとんど変化
しない
・アスペクト比と高さが同程
度のスピードで増加

本研究における解析
結果 (Case B)

・平均半径と平均高さが同
程度のスピードで増加
・アスペクト比の変化がほと
んどない
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Mean Aspect Ratio
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Mean Radius
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Case B
Case C
Case D

Case C:t=155.0

Case D:t=120.

Case B:t=160.0
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Time: t



End States 𝐿𝑥: 𝐿𝑦: 𝐿𝑧 = 2𝜋: 2𝜋: 2𝜋

Case C: 16 pillars

Case B: Checkerboard

Case D: Checkerboard

Case A: 3D dipole

3D view Top view

Case C: 16 pillars

Case B: Checkerboard

Case D: Checkerboard

Case A: 3D dipole
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