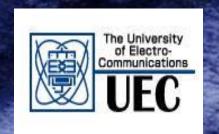
"Japan-Russia Workshop on Supercomputer Modelling, Instability and Turbulence in Fluid Dynamics (JR SMIT2015)" March 2015, Moscow

Clustering and Entropy Growth of Quasi-geostrophic Point Vortices under Periodic Boundary Conditions

Takeshi Miyazaki with students

The University of Electro-Communications (UEC) Email: miyazaki@mce.uec.ac.jp 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan



Outline

Background

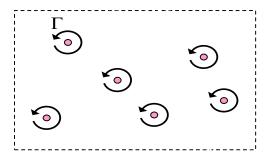
The relevance of vortices in Geophysical flows

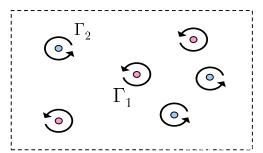
Quasi-geostrophic Approximation

Hierarchy of vortex based models of geostrophic turbulence

Statistical Mechanics of QG Point Vortices

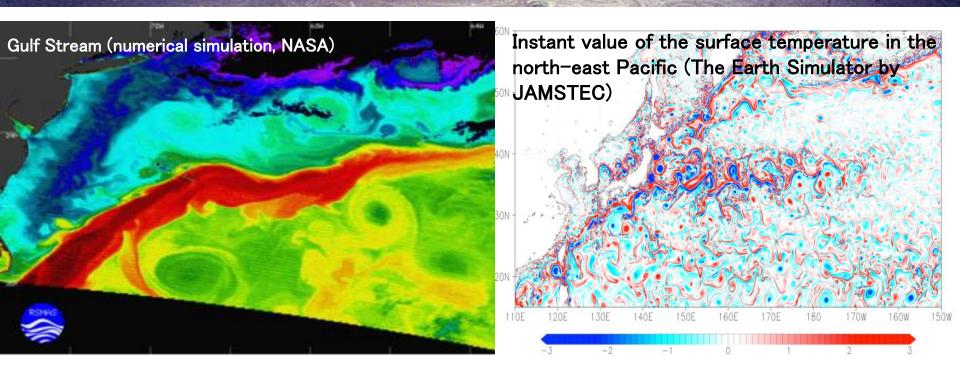
Mono-disperse system in an infinite domain (briefly)
Bi-disperse system of mixed sign under periodic conditions





- Comparison with the Maximum entropy theory
- Stability of the equilibrium state

Background-1



Geophysical flows ···

Vertical motion is suppressed due to the Coriolis force and stable stratification.

In a rotating stratified fluid, the interactions of isolated coherent vortices dominate the turbulence dynamics.

Background-2: Theoretical Approach

Two-dimensional point vortex systems lowest order approximation of geophysical flows

Many statistical studies have been made on purely 2D flows.

Statistical mechanics

- ☑ L. Onsager (1949), negative temperature
- ☑ D. Montgomery and G. Joyce (1974), canonical ensemble
- ☑ Y. B. Pointin and T. S. Lundgren (1976), micro canonical ensemble
- ✓ Yatsuyanagi *et al.* (2005), very large numerical simulation (N = 6724)

J. C. McWilliams *et al.* (1994) Coherent vortex structures in QG turbulence

2-layer QG point vortex system (2001) by Mark T. DiBattista and Andrew J. Majda

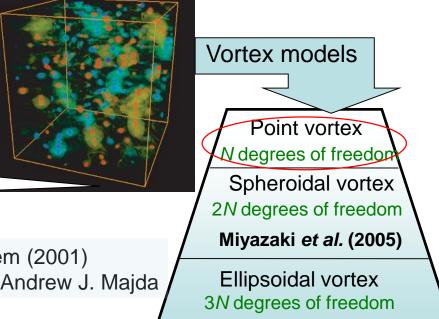
The actual geophysical flows are 3D.

- The fluid motions are almost confined within a horizontal plane.
- Different motions are allowed on different horizontal planes.

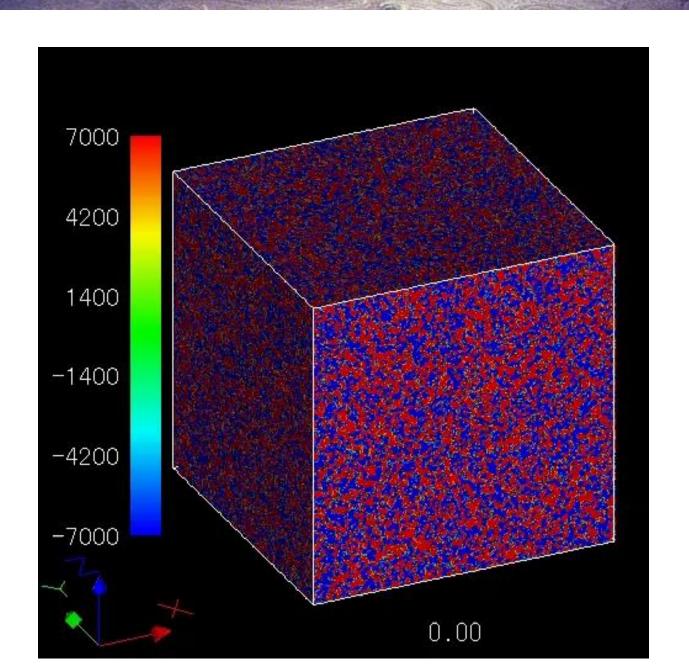
'Quasi-geostrophic approximation'

(next order approximation)

⇒The QG-approximation confines the motion in different horizontal planes.



Li et al. (2006)



Objective

Statistical Mechanics of QG Point Vortices

Numerical Computations using

Special Purpose Computers

Theoretical Studies based on

Maximum Entropy Theory

Quick review of

Mono-disperse System in an Infinite Domain

Mainly

Bi-disperse System in a Periodic Box

Quasi-geostrophic Approximation

2D Fluid motion (Ψ : stream function)

$$u = \frac{\partial \Psi}{\partial y}, \quad v = -\frac{\partial \Psi}{\partial x}, \quad w = O\left(\frac{f_0}{N}\right)$$

$$N = 1.16 \times 10^{-2} \,\text{s}^{-1}, \quad f_0 \sim 1/(24[\text{h}])$$

N: Brunt-Vaisala frequency

 f_0 : Coriolis parameter $(f_0 = 2\Omega \sin \theta)$ by at latitude θ)

Time-evolution under the quasi-geostrophic approximation

$$\left(\frac{\partial}{\partial t} + \frac{\partial \Psi}{\partial y} \frac{\partial}{\partial x} - \frac{\partial \Psi}{\partial x} \frac{\partial}{\partial y}\right) q = 0$$

Potential vorticity

$$q = -\Delta \Psi = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\Psi$$

Point vortex systems $\hat{\Gamma}_i$: strength, \mathbf{R}_i : location

$$q = \sum_{i=1}^{N} \hat{\Gamma}_i \delta(\boldsymbol{r} - \boldsymbol{R}_i), \quad \boldsymbol{r} = (x, y, z)$$

Assuming δ -function like concentration at N points, each vortex is advected by the flow field induced by other vortices.

Equations of Motion for Quasi-geostrophic Point Vortices

Canonical Variables: X, Y

Hamiltonian of QG N point vortex system (invariant)

$$H = \sum_{(i,j)}^{N} H_{mij}, \quad H_{mij} = \frac{\hat{\Gamma}_i \hat{\Gamma}_j}{4\pi |\mathbf{R}_i - \mathbf{R}_j|} \quad \mathbf{R}_i = (X_i, Y_i, Z_i)$$

 $\mathbf{R}_{j}^{\Gamma_{j}}$ $\mathbf{R}_{j}=(X_{j},Y_{j},Z_{j})$

Canonical equations of motion for the *i*-th vortex

$$\frac{\mathrm{d}X_i}{\mathrm{d}t} = \frac{1}{\hat{\Gamma}_i} \frac{\partial H}{\partial Y_i}, \quad \frac{\mathrm{d}Y_i}{\mathrm{d}t} = -\frac{1}{\hat{\Gamma}_i} \frac{\partial H}{\partial X_i}$$

Computation on Special Purpose Computers: MDGRAPE-3, -DR, GRAPE9 Time Integration with LSODE (6 significant digits)

t: dimensionless time (in units of the inverse potential vorticity)

■ MDGRAPE-3, MDGRAPE-DR, GRAPE9

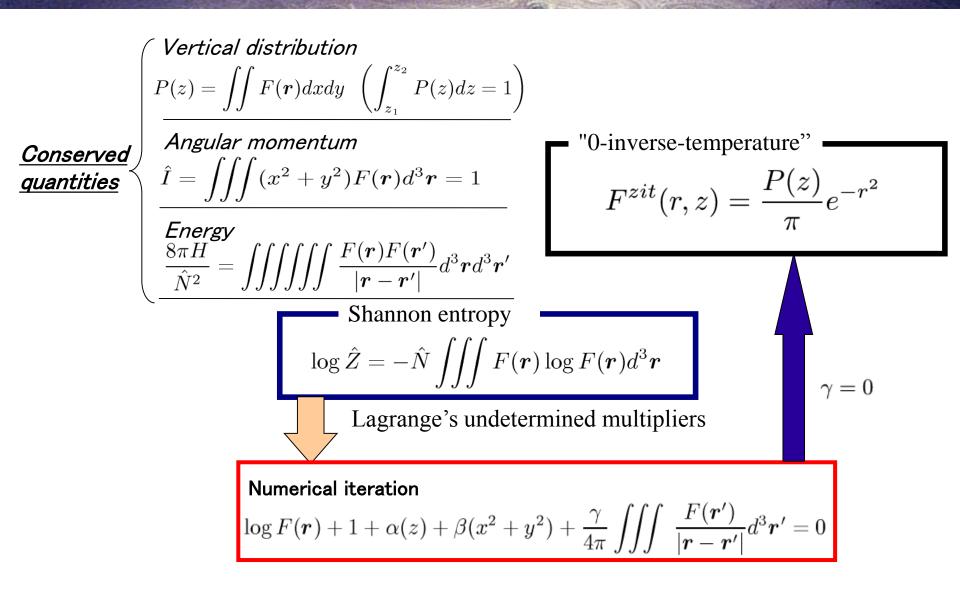
© http://mdgrape.gsc.riken.jp

Specifications

Number of MFGRAPE-3 Chip: 2 Performance: 330 Gflops (peak) Host Interface: PCI-X 64bit/100MHz

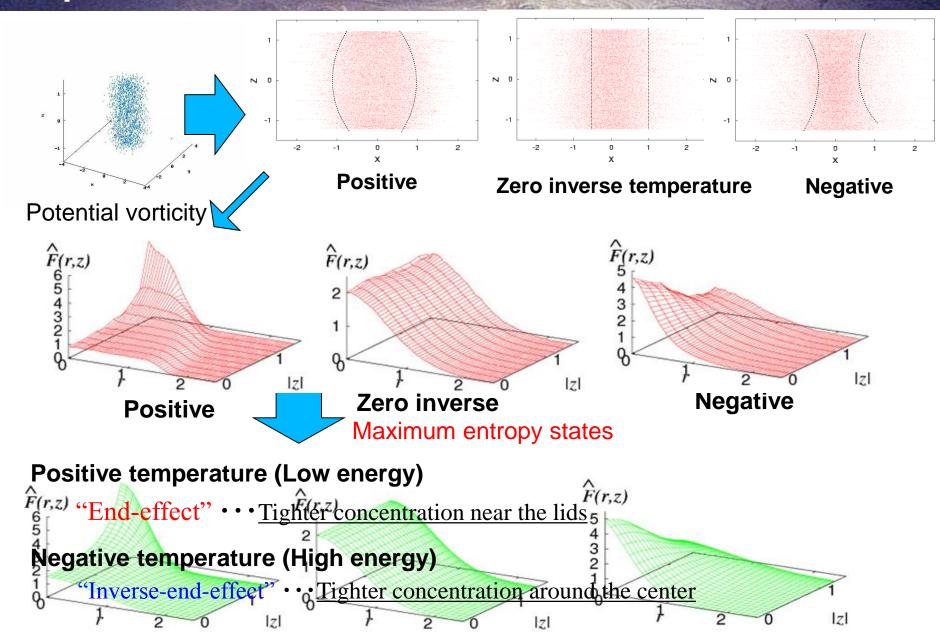
Power Consumption: 40 W

Maximum Entropy Theory for Mono-disperse System



Two-dimensional point vortices by Kida (J. P. S. J., 39(5) (1975), pp.1395-1404)

Equilibrium States in an Infinite Domain



Mono-disperse System in an Infinite Domain

Quick summary

- Mono-disperse system of same sign: the radial distribution changes with the energy level: Positive, zero-inverse and negative temperature states
- Numerical results are consistent with the theoretical results of the Maximum entropy theory
- > It takes quite long to obtain a well developed numerical equilibrium

References;

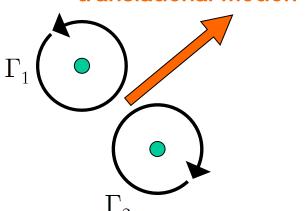
- S. Hoshi and T. Miyazaki: Fluid Dynamics Research (2008)
- ➤T. Miyazaki, T. Sato, H. Kimura and N. Takahashi:

 Geophysical and Astrophysical Fluid Dynamics (2011)
- ►T. Miyazaki, T. Sato and N. Takahashi: Phys. Fluids (2012)

QG Bi-disperse Point Vortices: $\Gamma_1 = -\Gamma_2$ $N = N_+ = N_-$

Poly-disperse, Mixed sign, · · · Geophysical flows •••

translational motion

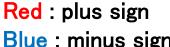


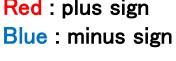
Counter-rotating : $\Gamma_1{=}{-}$ Γ_2

We have to calculate under periodic boundary conditions

Problem

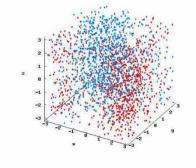
Because the vortices diffuse towards infinity, They drift outside the secure calculation area of the MDGRAPE-3, GRAPE-DR and GRAPE9.

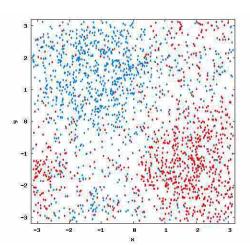




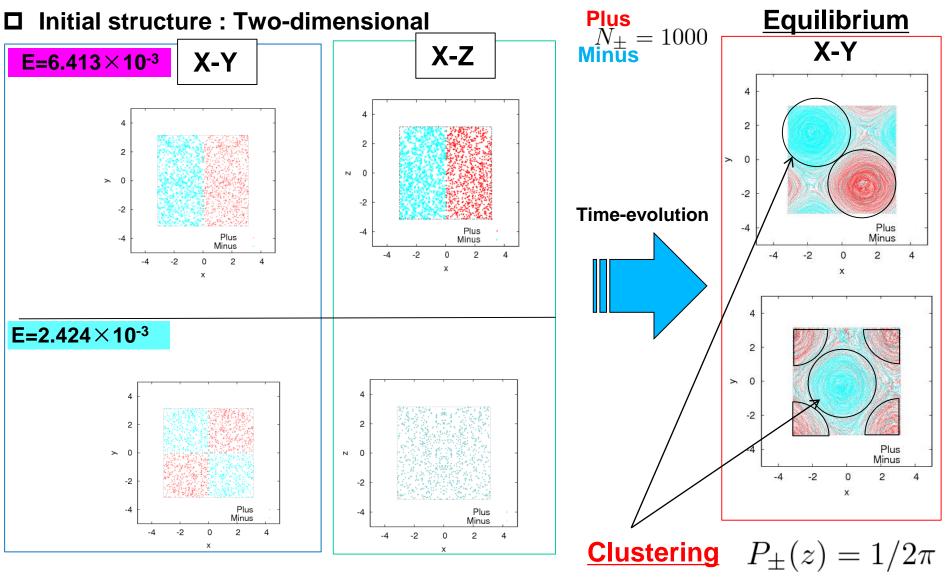
"Ewald sum", as frequently used in Molecular Dynamics

Replacement of real-space summation with equivalent summation in Fourier space under the periodic boundary conditions





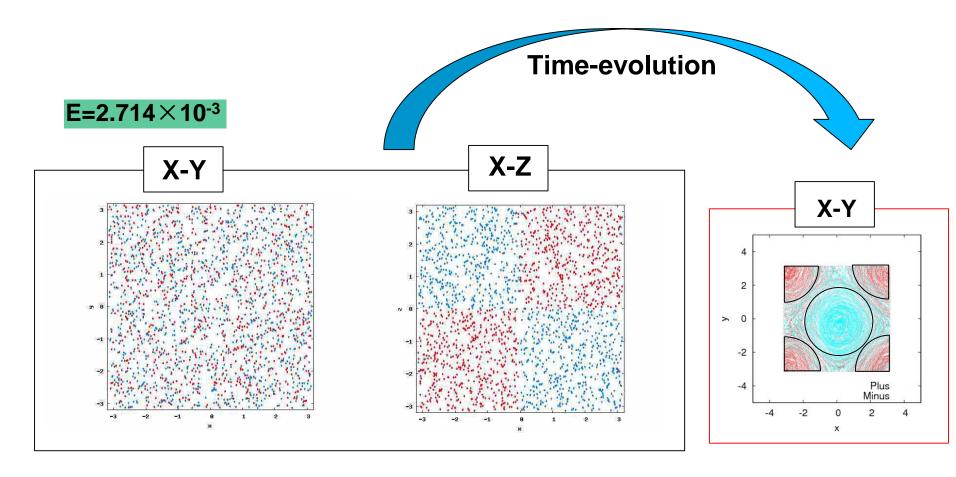
Numerical Results: Small System (N=1000)



- Does the energy determine the equilibrium state uniquely?
- Are all equilibrium states <u>two-dimensional</u>?

Numerical Results: Small System (N=1000)

Three-dimensional Initial Distribution



- Transition from three-dimensional to two-dimensional structure!
- ➤ Is there a <u>unique equilibrium</u> state at a <u>specified energy</u> level?
- How does the system approach the equilibrium state?

Transient Behavior: Larger Systems

$$L_x: L_y: L_z = 2\pi: 2\pi: 2\pi$$

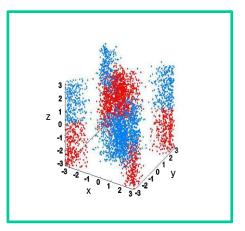
Case A: 3D dipole

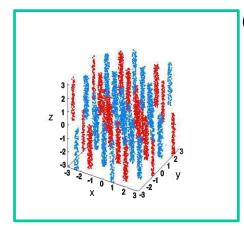
$$E = 10.01 \times 10^{-3}$$

$$N_{+} = 4000$$

$$N_{-} = 4000$$

$$\hat{\Gamma}_{+} = 0.062$$





Case B: Checkerboard

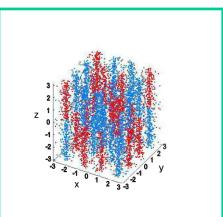
$$E = 4.428 \times 10^{-3}$$
 $N_{+} = 4000$
 $N_{-} = 4000$
 $\hat{\Gamma}_{\pm} = 0.062$

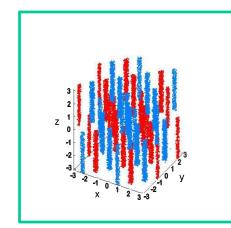
Case C: 16 pillars

$$E = 2.426 \times 10^{-3}$$
$$N_{+} = 4000$$

$$N_{-} = 4000$$

$$\widehat{\Gamma}_{\!\pm}=0.062$$





Case D: Checkerboard

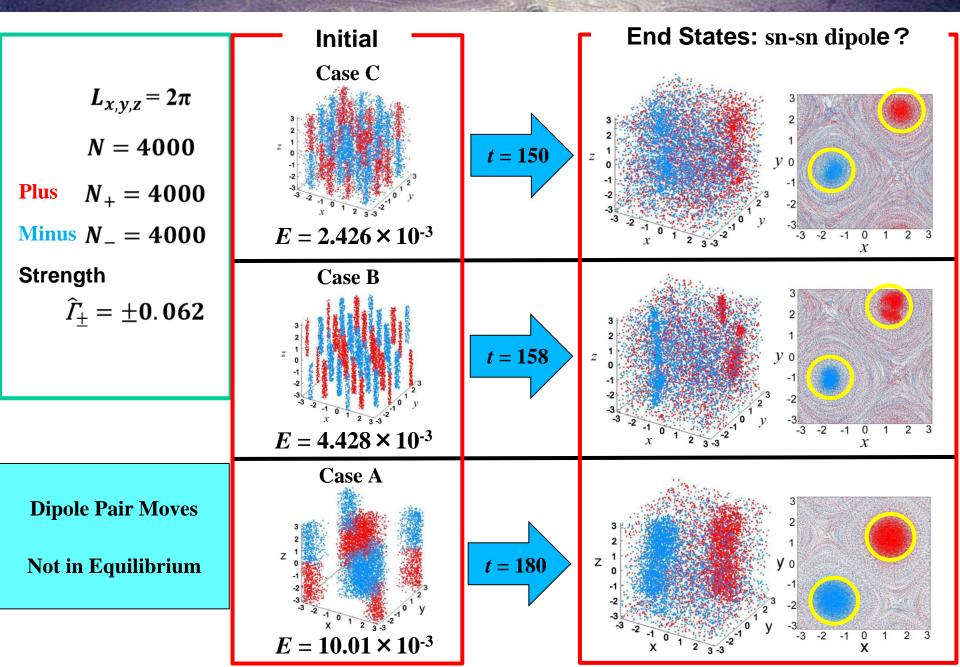
$$E = 4.536 \times 10^{-3}$$

$$N_{+} = 8000$$

$$N_{-} = 8000$$

$$\hat{\Gamma}_{+} = 0.031$$

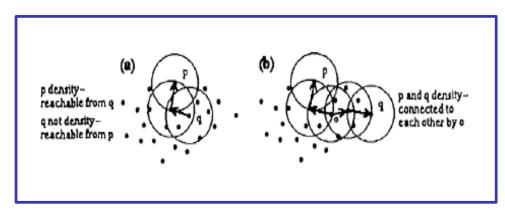
End States of Larger Computations



Density based Clustering Analysis

Quantitative analysis of transient process:

DBSCAN method (Ester et al. 1996)

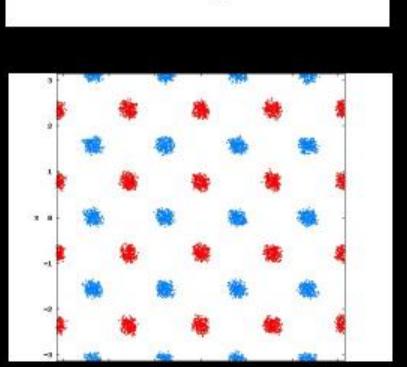


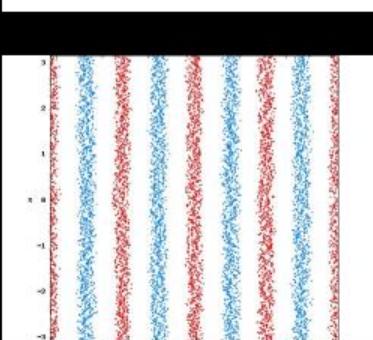
↑ Density based algorithm (Ester et al.)

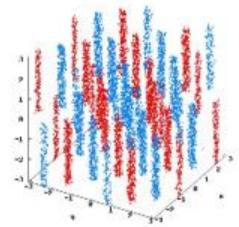
A group of vortices is identified as a cluster, if its size is greater than the minimum radius: r and the number of vortices inside exceeds the minimum number: N_c

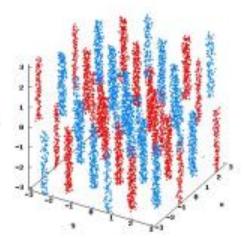
Case	r	N_c
A	0.4	25
В	0.4	25
C	0.4	25
D	0.3	22

↑ Used parameters

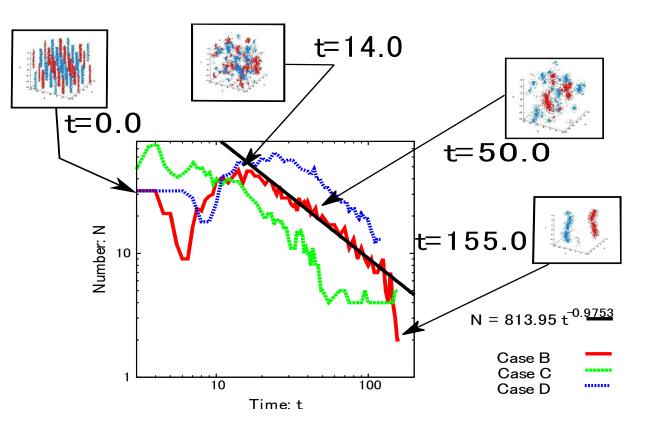








Number of Clusters



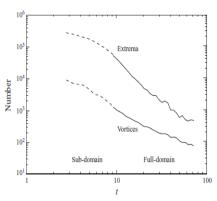


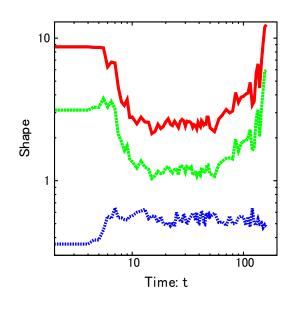
FIGURE 4. The number of extrema and compound vortices, $n_e(t)$ and $n_{ex}(t)$,

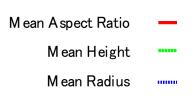
McWilliams *et al.*1999 Spectral Computation

Cluster number decays like t^{-1} , which is slower than in McWilliams' numerical simulations ($t^{-1.25}$).

McWilliams J C, Weiss J B and Yavneh I: J.Fluid Mech. 401 1-16, 1999

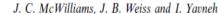
Cluster Shape





- •Mean aspect ratio $a = \frac{h}{r}$ of clusters increases with time $(2 \rightarrow 10)$.
- Mean radius r remains constant.
- Mean height h increases.

Clusters align vertically but never merge.



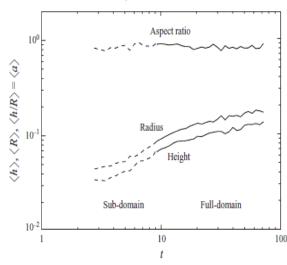


FIGURE 8. The population-mean vortex-element radius, $\langle R \rangle(t)$, half-height, $\langle h \rangle(t)$, and aspect ratio, $\langle a \rangle(t)$, from the vortex census.

- •Mean aspect ratio $a = \frac{h}{r}$ of clusters remains constant (about 1.6).
- Mean radius r increases.
- Mean height h increases.

Clusters merge and align.

Maximum Entropy Theory for QG Vortices of Mixed Sign

Conserved quantities

Probability density function: PDF

Vertical vortex distributions

$$P_{+}(z) = \iint F_{+}(x,y,z) dxdy$$
 , $P_{-}(z) = \iint F_{-}(x,y,z) dxdy$

Energy

$$E = \frac{1}{2} \iiint \iint G(\mathbf{r}, \mathbf{r}') [F_{+}(\mathbf{r})F_{+}(\mathbf{r}') + F_{-}(\mathbf{r})F_{-}(\mathbf{r}') - 2F_{+}(\mathbf{r})F_{-}(\mathbf{r}')] d^{3}\mathbf{r} d^{3}\mathbf{r}'$$

Shannon entropy

$$\log \hat{Z} = \frac{1}{N} \log Z = -\iiint [F_{+}(\mathbf{r}) \log F_{+}(\mathbf{r}) + F_{-}(\mathbf{r}) \log F_{-}(\mathbf{r})] d^{3}\mathbf{r}$$

Lagrange's method of undetermined multipliers

Variational equations

$$\delta F_{+}: -1 - \log F_{+} - \alpha_{+}(z) - \beta \iiint G(\mathbf{r}, \mathbf{r}') [F_{+}(\mathbf{r}') - F_{-}(\mathbf{r}')] d^{3}\mathbf{r}' = 0$$

$$\delta F_{-}: -1 - \log F_{-} - \alpha_{-}(z) - \beta \iiint G(\mathbf{r}, \mathbf{r}') [F_{-}(\mathbf{r}') - F_{+}(\mathbf{r}')] d^{3}\mathbf{r}' = 0$$

$$\alpha_{\pm}(z) \Longrightarrow P_{\pm}(z)$$

Turkington .B & Whitaker .N : SIAMJ. Sci. Comput. (1996)

$$\beta \Rightarrow E$$

Funakoshi, S. & Miyazaki, T.,: Fluid Dyn. Res. 44 (2012)

Mean Field Equation for QG Point Vortices

■ For Quasi-geostrophic point vortices

Potential vorticity :
$$q(r) \equiv F_{+}(r) - F_{-}(r)$$

Stream function :
$$\psi({m r}) \equiv \iiint G({m r},{m r}') [F_+({m r}') - F_-({m r}')] d^3{m r}'$$

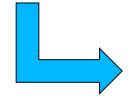
> Symmetric case:

$$\alpha_{+}(z) = \alpha_{-}(z) = \alpha(z)$$

The maximum entropy state satisfies the following equation:

$$q(\mathbf{r}) = -2e^{-\alpha(z)-1}\sinh\beta\psi(\mathbf{r})$$

Potential vorticity: $q({m r}) = -\Delta \psi({m r})$



Mean field equation

$$\Delta \bar{\psi}(\mathbf{r}) + \lambda^2(z) \sinh \bar{\psi}(\mathbf{r}) = 0$$

*
$$\bar{\psi}(\boldsymbol{r}) = \beta \psi(\boldsymbol{r})$$
 , $\lambda^2(z) = -2\beta e^{-\alpha(z)-1}$

It reduces to the Sinh-Poisson equation for 2D point vortices

$$\Delta \psi(\mathbf{r}) + \lambda^2 \sinh \psi(\mathbf{r}) = 0$$

Joyce & Montgomery : J. Plasma Phys. (1973)

Dual Problem of the Maximum Entropy Theory

Dual problem

$$\alpha_{+}^{k+1}(z)P_{+}(z) + \alpha_{-}^{k+1}(z)P_{-}(z) + \beta^{k+1}(E^{k} + E_{0})$$

$$+ \iiint \exp\left[-1 - \alpha_{+}^{k+1}(z) - \beta^{k+1}\psi^{k}(\mathbf{r})\right]d^{3}\mathbf{r} + \iiint \exp\left[-1 - \alpha_{-}^{k+1}(z) + \beta^{k+1}\psi^{k}(\mathbf{r})\right]d^{3}\mathbf{r}$$

Minimum

Conserved quantities

$$P_{+}(z) = \iint \exp\left[-1 - \alpha_{+}^{k+1}(z) - \beta^{k+1}\psi^{k}(\mathbf{r})\right] dxdy = \iint F_{+}^{k+1}(\mathbf{r}) dxdy$$

$$P_{-}(z) = \iint \exp\left[-1 - \alpha_{-}^{k+1}(z) + \beta^{k+1}\psi^{k}(\mathbf{r})\right] dxdy = \iint F_{-}^{k+1}(\mathbf{r}) dxdy$$

$$E^{k} + E_{0} = \iiint \psi^{k} \{F_{+}^{k+1}(\mathbf{r}) - F_{-}^{k+1}(\mathbf{r})\} d^{3}\mathbf{r}$$

Where,
$$\Delta \psi^k(\boldsymbol{r}) = -F_+^k(\boldsymbol{r}) + F_-^k(\boldsymbol{r})$$

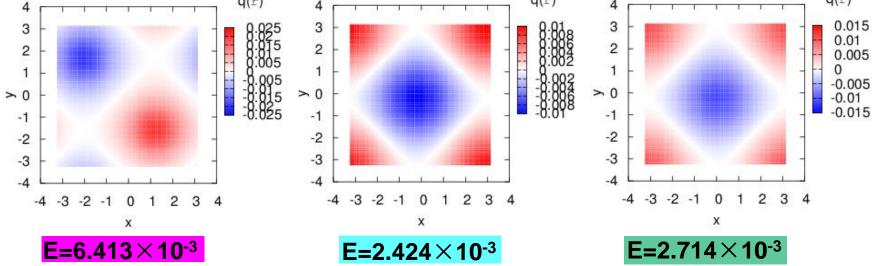
- \blacktriangleright Assuming $F_+^k, F_-^k, \alpha_+^k(z), \alpha_-^k(z), \beta^k$ are given,
- ightharpoonup determine $\alpha_+^{k+1}(z), \alpha_-^{k+1}(z), \beta^{k+1}$ by an iteration method.

Accuracy:
$$EPS = \sum_{i=1}^{n} [|\alpha_{+}^{k+1}(z(i)) - \alpha_{+}^{k}(z(i))|^{2} + |\alpha_{-}^{k+1}(z(i)) - \alpha_{-}^{k}(z(i))|^{2} + |\beta^{k+1} - \beta^{k}|^{2}] \le 10^{-8}$$

Turkington .B & Whitaker .N : SIAMJ. Sci. Comput. (1996)

Comparison between Numerical and Theoretical Results

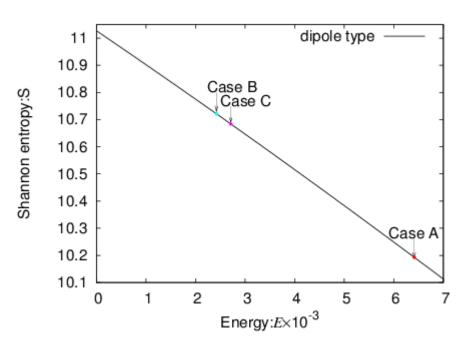
◆ Numerical results by point vortex simulation caseB E=2.424×10⁻³ caseC E=2.714×10⁻³ $E=6.413\times10^{-3}$ caseA -2 -2 -4 ◆Theoretical results: initial potential vorticity numerical results q(r) q(r)0.015 3 0.01



✓ Numerical equilibriums are Maximum entropy states!

2D Exact Solutions

Diagram in E-S plane: Cases A~C

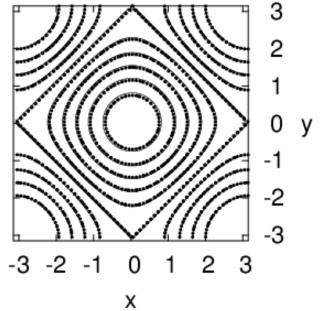


Cases A~C are on the same branch.

"Sinh-Poisson Eq." has Soliton_solutions.

Stream function

Case B: $\lambda^2(z) = 0.8852, k = 0.02074$



Cases A~C are two-dimensional "sn-sn dipole"-type solutions.

$$\Psi = 4 \tanh^{-1} \left[\frac{\sqrt{k} sn(rx, k) - \sqrt{k_1} sn(sy, k_1)}{1 + \sqrt{kk_1} sn(rx, k) sn(sy, k_1)} \right]$$

$$s^{2}(1-k_{1})^{2} = \lambda^{2} + 4r^{2}k, \quad s(1+k_{1}) = r(1+k)$$

Gurarie & Chow: Phys. Fluids. (2004)

2π-Cubic box

$$s = r = 2K(k)/\pi$$
$$k = k_1$$

Elliptic integral: K(k)

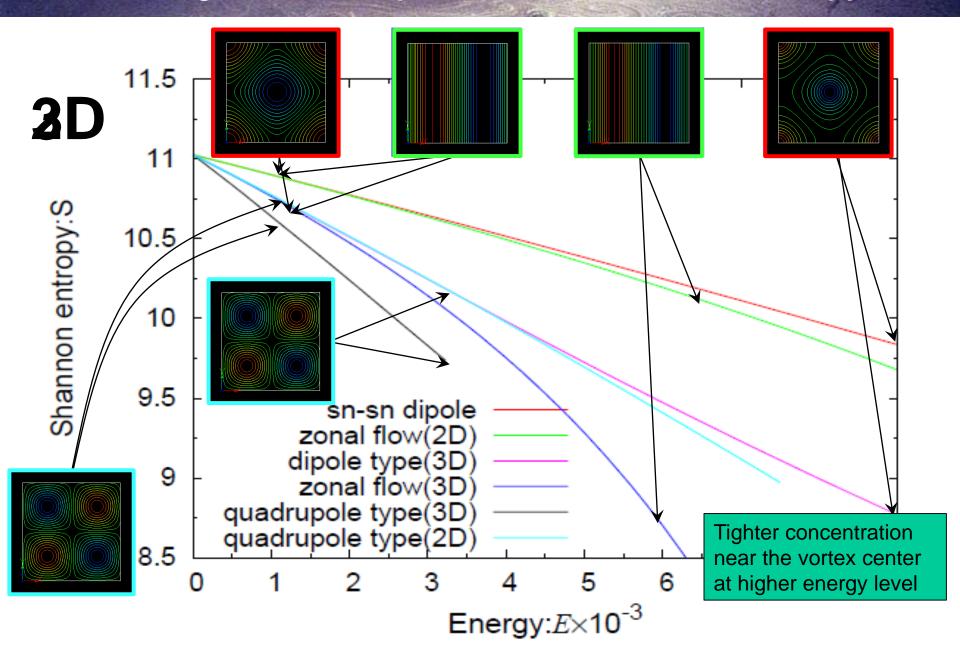
Elliptic function: sn(u, k)

Other Maximum Entropy States?

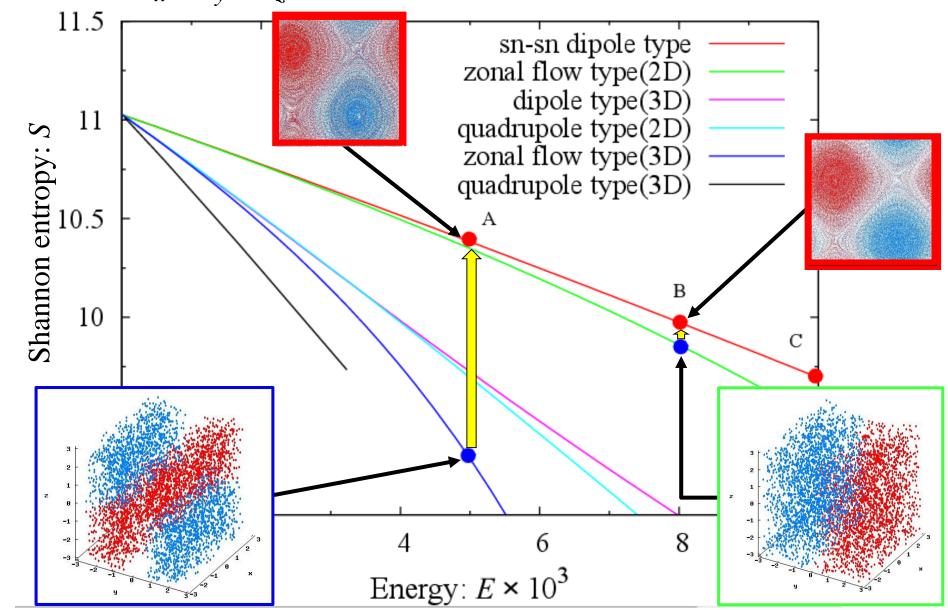
Initial vorticity guess	Vortex type	Vertical distribution: P(z)
$A \ sinx$	zonal flow (2D)	$1/(2\pi)$
A (cosx + cosy)	dipole (2D)	$1/(2\pi)$
$A \ sinxsiny$	quadrupole	$1/(2\pi)$
	(2D)	
$A \ sinx \ sinz$	zonal flow (3D)	$1/(2\pi)$
A (cosx + cosy)sinz	dipole (3D)	$1/(2\pi)$
$A\ sinxsinysinz$	quadrupole	$1/(2\pi)$
	(3D)	

Numerical Results

Bifurcation Diagram in the E-S plane: 2D and 3D Maximum Entropy States

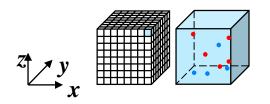


Transition to Maximum Entropy State



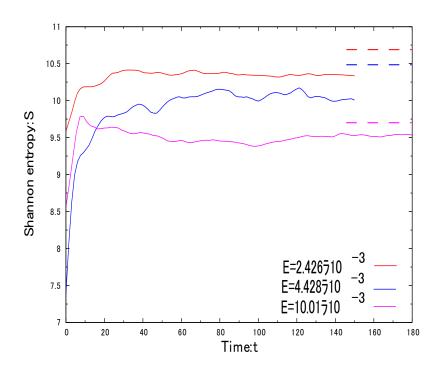
Entropy Growth

* Entropy Evaluation



$$\nabla V = \frac{(2\pi)^3}{N}$$
 $F_{\pm}(\mathbf{r}) = \frac{n_{\pm}}{N\Delta V} = \frac{n_{\pm}}{(2\pi)^3}$

$$S = - \iiint [F_{+}(\mathbf{r}) \log F_{+}(\mathbf{r}) + F_{-}(\mathbf{r}) \log F_{-}(\mathbf{r})] d^{3}\mathbf{r}$$



Shannon entropy grows with time and seems to approach the equilibrium value from below.

Stability Analysis by Arnold's Method

Conserved Quantities

$$H = \frac{1}{2} \iiint q\psi dx dy dz, \ C = \iiint F(q, z) dx dy dz$$

$$\psi \leftarrow \underline{\psi_0} + \underline{\delta \psi}$$
 variations of $H_C = H + C$ Equilibrium Disturbance

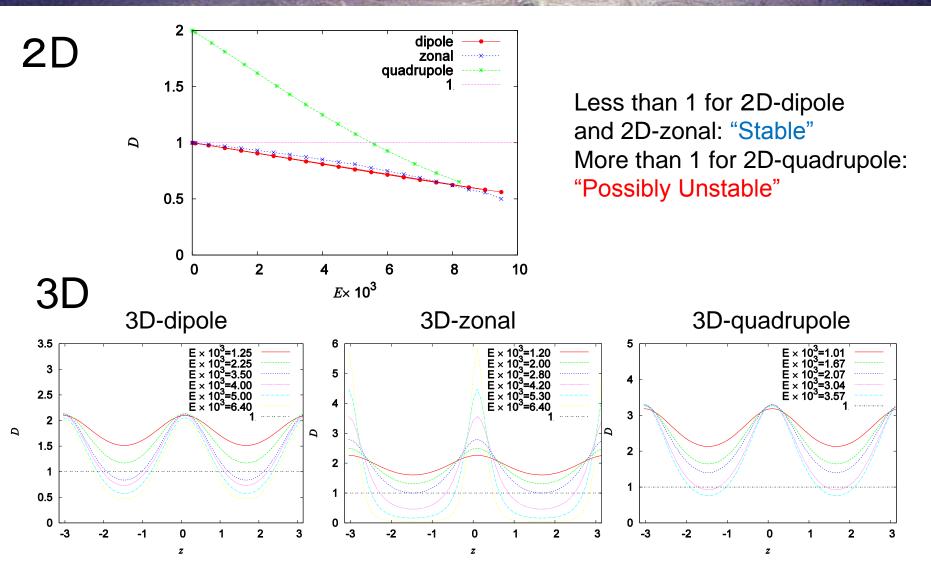
$$-F(q_0,z)=q_0\sinh^{-1}\left(\frac{q_0}{\lambda^2(z)}\right)-\sqrt{\lambda^4(z)+q_0^2} \ \ \text{to have the Mean Field Equation}$$

First variation:
$$\delta H_C = \iiint \left[q_0 - \Delta \left(\frac{\partial F}{\partial q_0} \right) \right] \delta \psi dx dy dz = 0$$

Second variation:
$$\delta^2 H_C = \frac{1}{2} \iiint \left[|\mathrm{grad}\delta\psi|^2 - \frac{(\Delta(\delta\psi))^2}{\sqrt{\lambda^4(z) + q_0^2}} \right] dx dy dz ? 0$$

Stability cannot be proved in general

Results of Stability Analysis



More than 1 for any case: "Possibly Unstable"

Direct Numerical Simulations of QG equation

Continuous QG equation

 ${\mathcal V}$: Viscosity ${\mathcal P}$: Order of dissipation

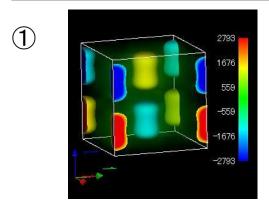
$$\left(\frac{\partial}{\partial t} + \frac{\partial \psi(\boldsymbol{r},t)}{\partial y} \frac{\partial}{\partial x} - \frac{\partial \psi(\boldsymbol{r},t)}{\partial x} \frac{\partial}{\partial y} \right) q(\boldsymbol{r},t) = \underline{(-1)^{p+1} \nu \Delta^p q(\boldsymbol{r},t)}$$
 Dissipation term

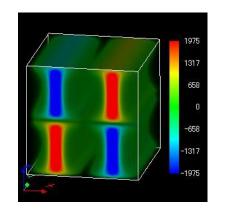
Fourier Modes (Quasi-Spectral Method)

$$\hat{q}(k_x, k_y, k_z, t) = (k_x^2 + k_y^2 + k_z^2)\hat{\psi}(k_x, k_y, k_z, t)$$

Initial Equilibrium States

Wave number vector: ${m k}=(k_x,k_y,k_z)$



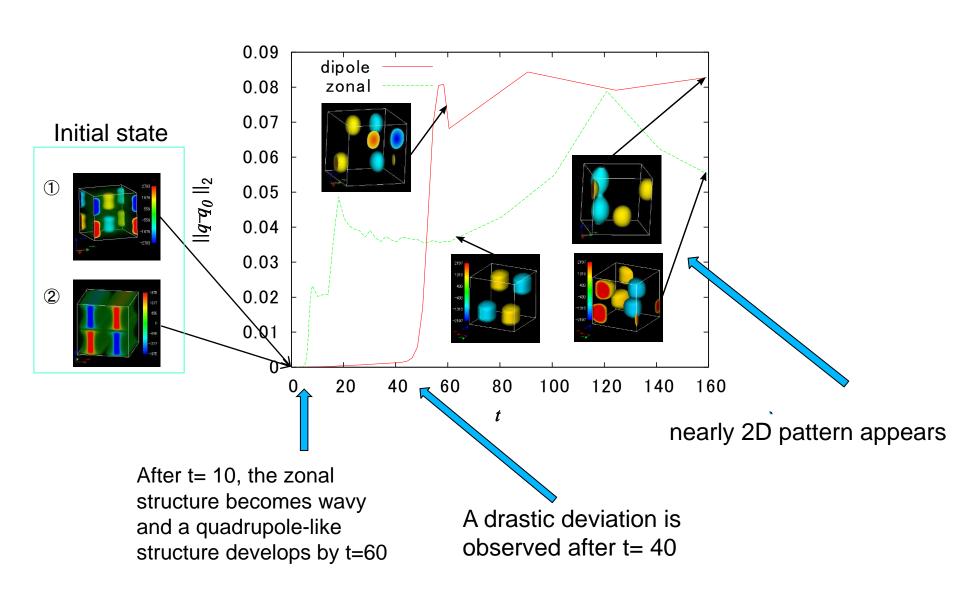


Adding small disturbances 4th order RK time marching De-aliasing by 2/3 rule

3D-dipole
$$E = 6.40 \times 10^{-3}$$

3D-zonal
$$E = 6.40 \times 10^{-3}$$

Results of Direct Numerical Simulations of QG equation



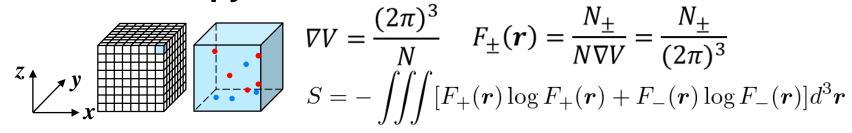
Summary

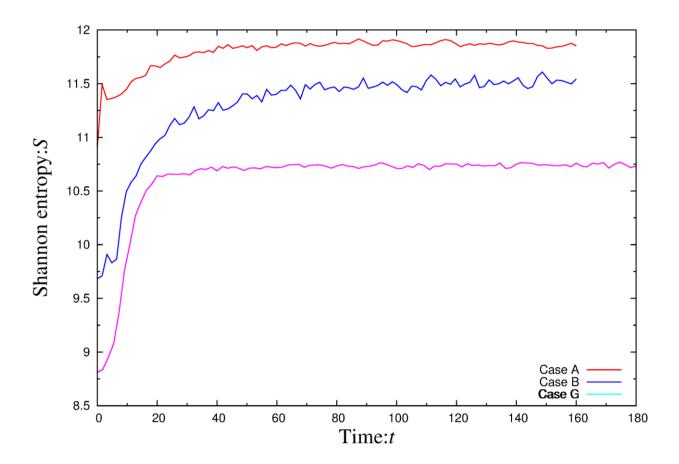
- We investigate the statistical mechanics of bi-disperse quasigeostrophic point vortices numerically and theoretically.
- 1. Clustering of vortices of like sign occurs (negative temperature state), and the equilibrium has two-dimensional dipole structure.
- 2. Shannon entropy increases and the number of cluster decreases like t^{-1} .
- 3. The maximum entropy states are determined theoretically by solving the mean field equation. They coincide with the numerical end states.
- 4. Two- and three-dimensional maximum entropy states are found.
- 5. The two-dimensional *sn-sn* dipole solution has the largest entropy, which is the reason only this branch is found numerically.
- 6. The two-dimensional *sn-sn* dipole and zonal flow solutions are found to be stable.

Thank you for your attention

Entropy Growth in Numerical Simulations

Shannon Entropy





Ewald Sum: Energy under periodic boundary conditions

Energy (Hamiltonian)

$$H = H^{(1)} + H^{(2)} + H^{(3)}$$
Wavenumber space
Real space Constant term

Assume: $F(r) = \Gamma' \left(\frac{\alpha}{\pi}\right)^{\frac{3}{2}} \exp(-\alpha^2 r^2)$: Gaussian

(α [L-1]: scaling parameter)

[for cubic cell L^3] $L=\pi-(-\pi)=2\pi$

■ Real space

$$H^{(1)} = \frac{1}{2} \sum_{n} \sum_{i} \sum_{j} \frac{\hat{\Gamma}_{i} \hat{\Gamma}_{j}}{4\pi} \frac{\operatorname{erfc}(\alpha |\mathbf{R}_{i} - \mathbf{R}_{j} + L\mathbf{n}|)}{|\mathbf{R}_{i} - \mathbf{R}_{j} + L\mathbf{n}|}$$

■ Wavenumber space

$$H^{(2)} = \frac{2\pi}{L^3} \sum_{G \neq 0} \frac{\exp(-|G|^2/4\alpha^2)}{|G|} \sum_{i} \sum_{j} \frac{\hat{\Gamma}_i \hat{\Gamma}_j}{4\pi} \cos\{G \cdot (R_i - R_j)\}$$

■ Self energy (Constant term)

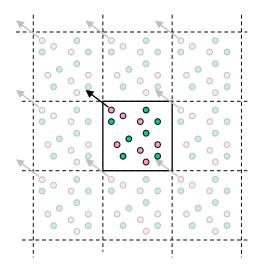
$$H^{(3)} = -\sum_{i} \frac{\hat{\Gamma}_{i}^{2}}{4\pi} \frac{\alpha}{\sqrt{\pi}}$$

$$G = \frac{2\pi}{L}h$$
: wavenumber vector (h : integer vector)

Canonical equations of motion for the *i*-th vortex

$$\frac{\mathrm{d}X_i}{\mathrm{d}t} = \frac{1}{\hat{\Gamma}_i} \frac{\partial H}{\partial Y_i}, \quad \frac{\mathrm{d}Y_i}{\mathrm{d}t} = -\frac{1}{\hat{\Gamma}_i} \frac{\partial H}{\partial X_i}$$

$$E = H/(\sum_{i=1}^{N} |\hat{\Gamma}_i|)^2$$



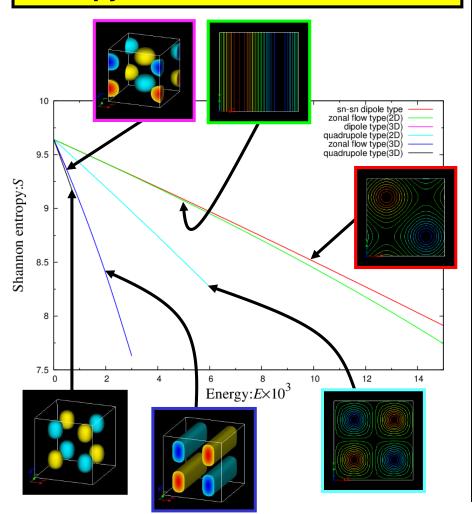
Real space and image cells

Influence of Aspect ratio: $L_z / L_x = 0.5$ and 4.0

Box size:

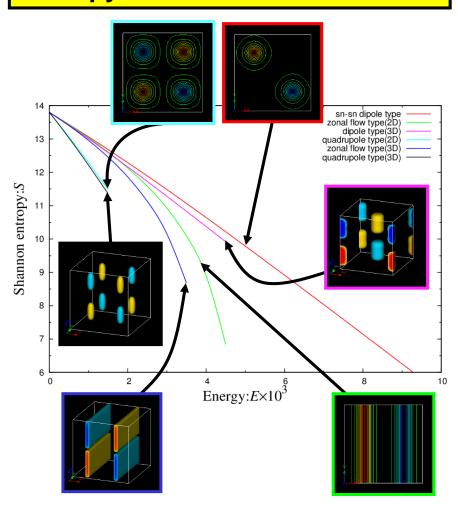
$$L_x: L_y: L_z = 2\pi : 2\pi : \pi$$

Entropy decrease of 3D solutions

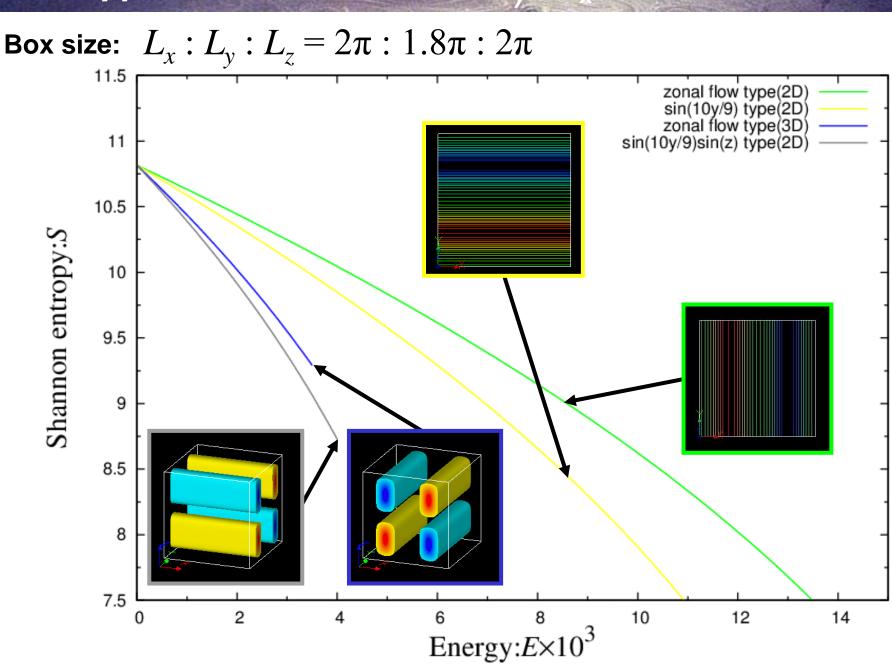


$$L_x: L_y: L_z = 2\pi: 2\pi: 8\pi$$

Entropy increase of 3D solutions

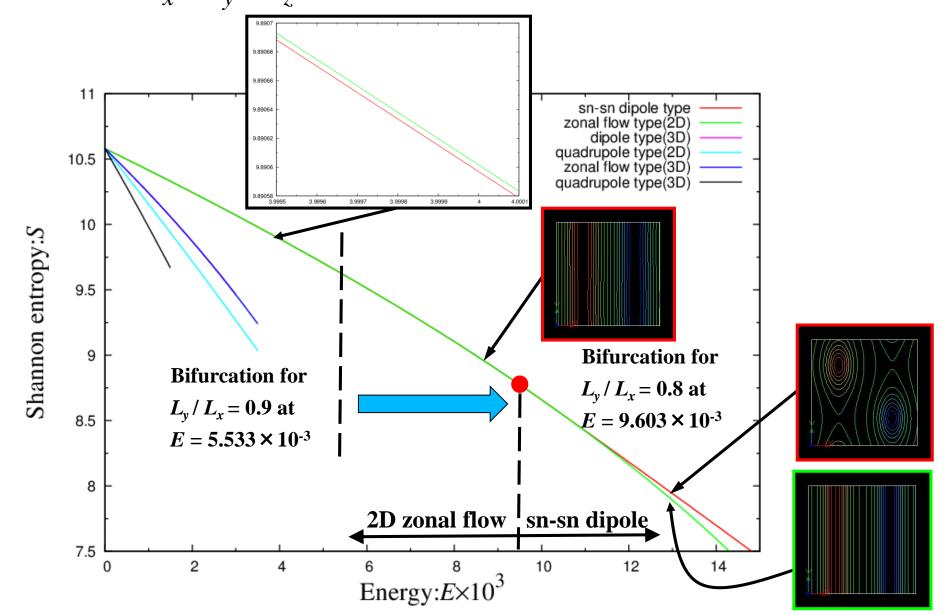


Two types of Zonal Flow for $L_v / L_x = 0.9$

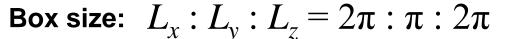


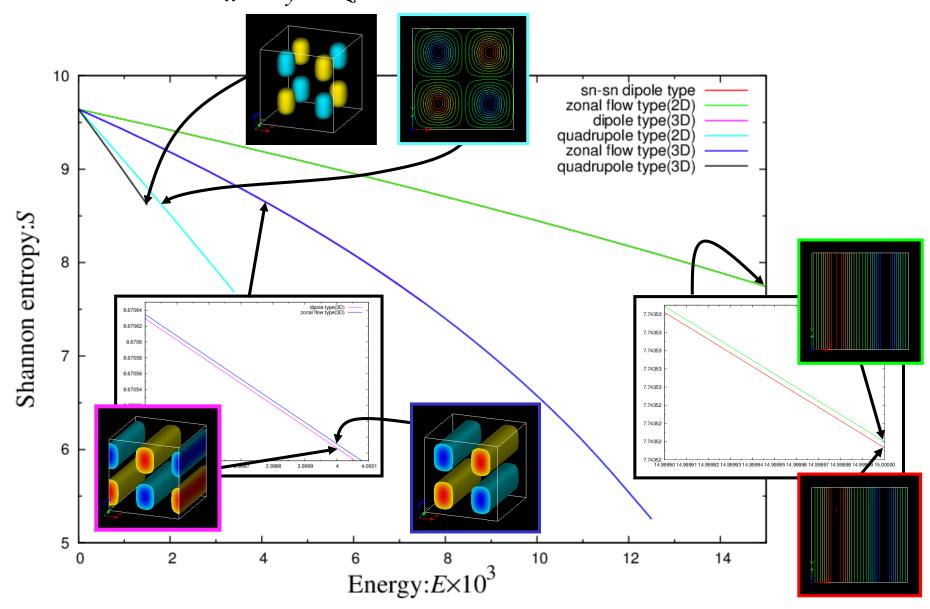
Influence of Aspect ratio: $L_y / L_x = 0.8$

Box size: $L_x:L_y:L_z=2\pi:1.6\pi:2\pi$



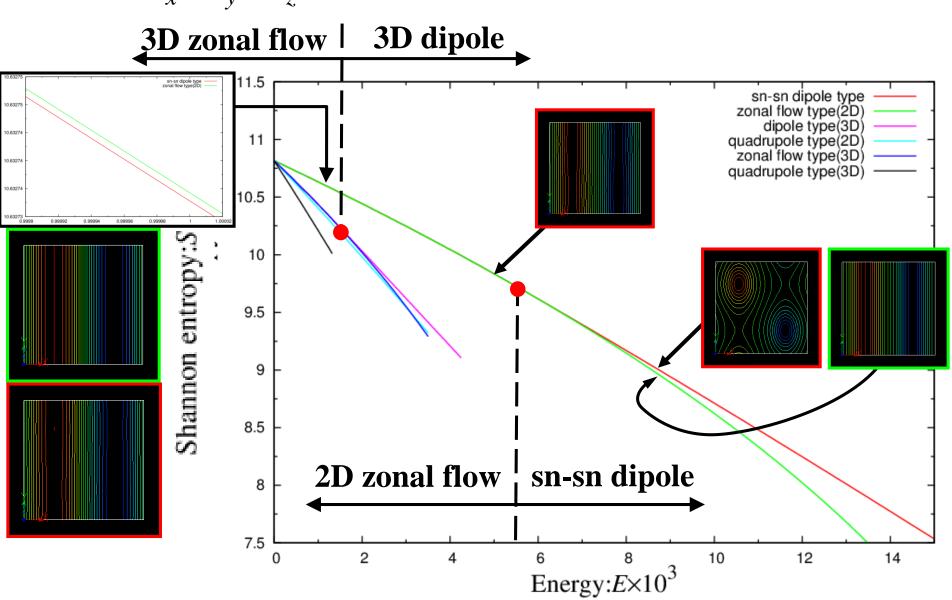
Influence of Aspect ratio: $L_v / L_x = 0.5$





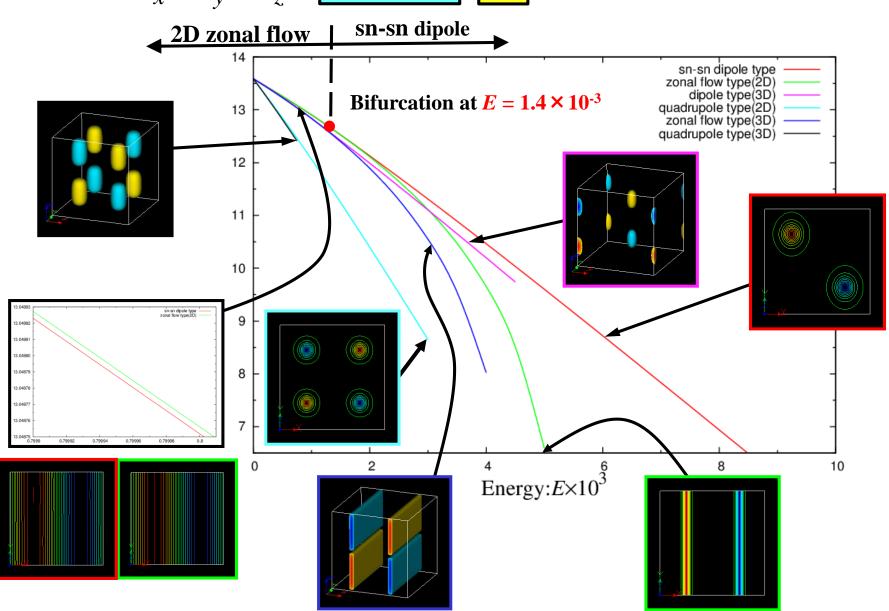
Influence of Aspect ratio: $L_y / L_x = 0.9$

Box size: $L_x: L_y: L_z = 2\pi: 1.8\pi: 2\pi$



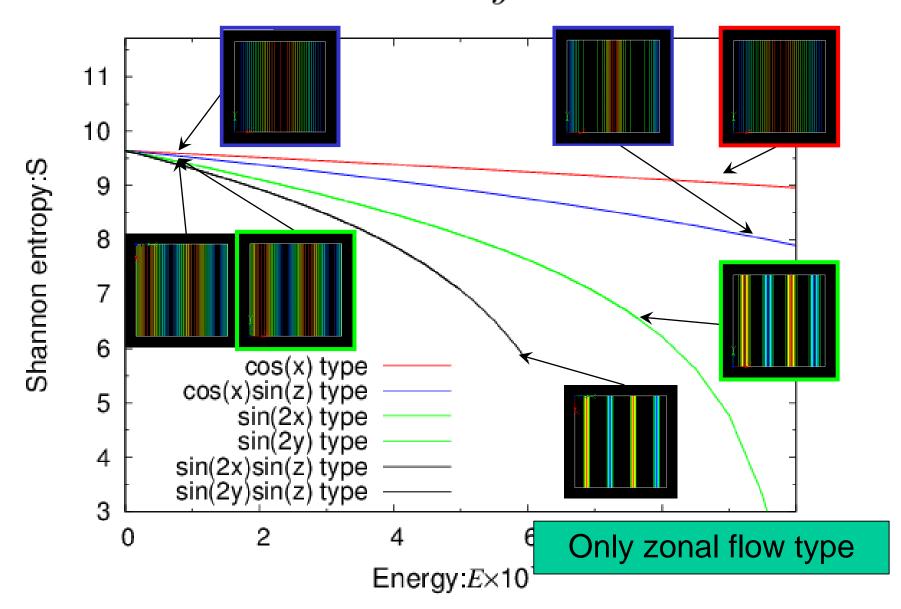
Influence of Aspect ratio: $L_v / L_x = 0.9$, $L_z / L_x = 4.0$

Box size: $L_x : L_y : L_z = 2\pi : 1.8\pi : 8\pi$



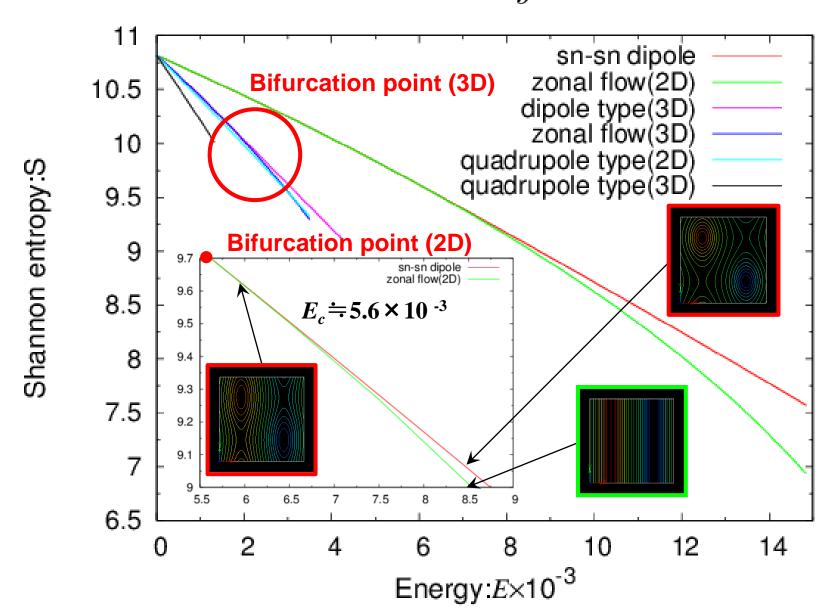
Influence of the Aspect Ratio (1)

Aspect ratio of the periodic domain: $x:y:z=2\pi:\pi:2\pi$

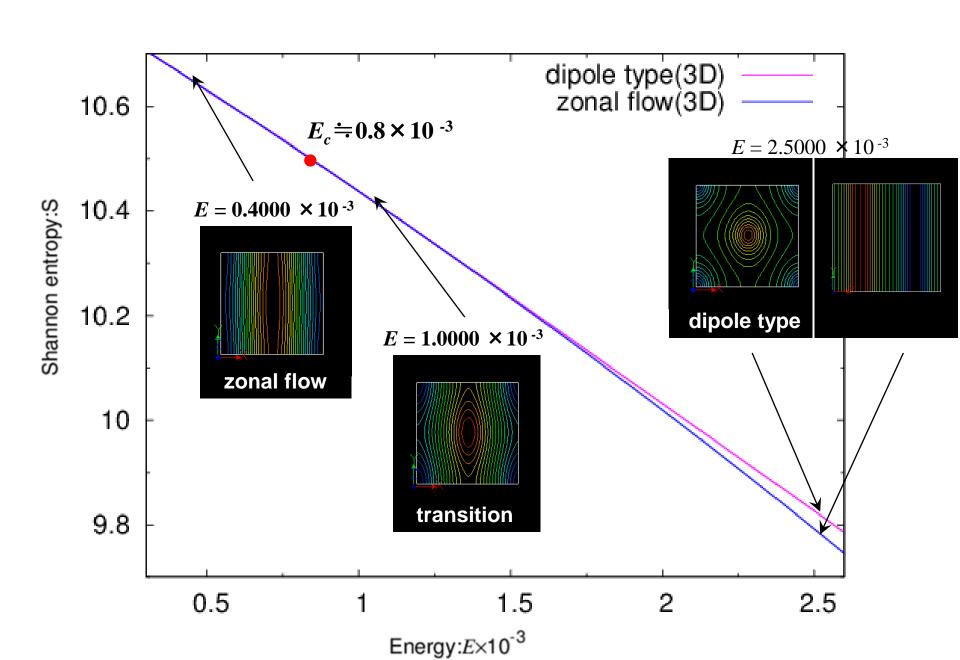


Influence of the Aspect Ratio (2)

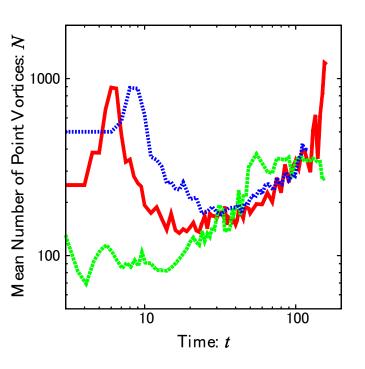
Aspect ratio of the periodic domain: $\,x:y:z=2\pi:1.8\pi:2\pi\,$

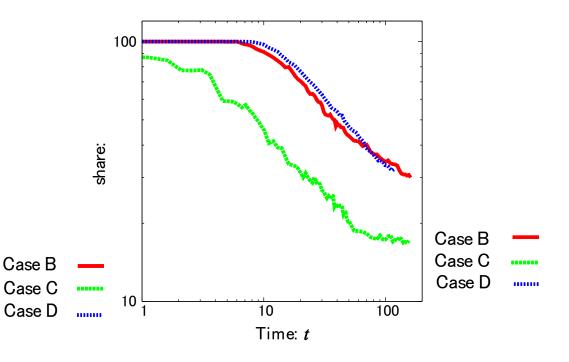


Transition from 3D zonal to 3D dipole type

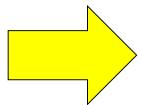


Cluster Strength





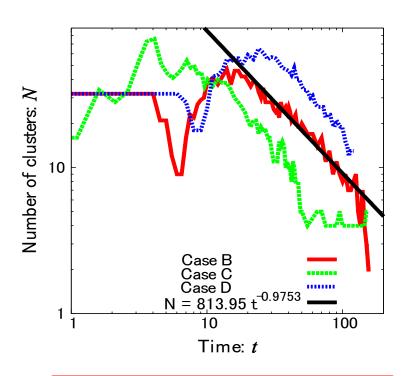
- Number of point vortices in a cluster increases.
- Share of point vortices inside clusters decreases.



- Cluster size grows due to vertical alignment.
- Some of point vortices are emitted from clusters.

スペクトル法による数値計算結果との比較

本研究における解析結果



~t^{-1.00}にしたがってク ラスター数が減少 McWilliams *et al*.[2]によるスペクトル法の数値シミュレーション結果

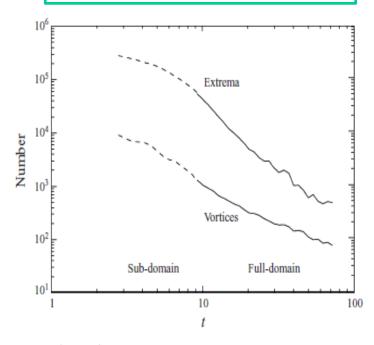
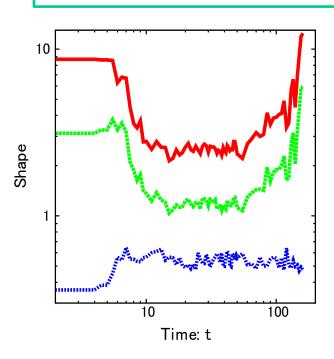


Figure 4. The number of extrema and compound vortices, $n_e(t)$ and $n_{cv}(t)$, from the vortex census.

 $\sim t^{-1.25}$ にしたがって渦数が減少

スペクトル法による数値計算結果との比較

本研究における解析 結果 (Case B)



M ean A spect Ratio

M ean Height

M ean Radius

McWilliams *et al*.[2]によるスペクトル法の数値シミュレーション結果

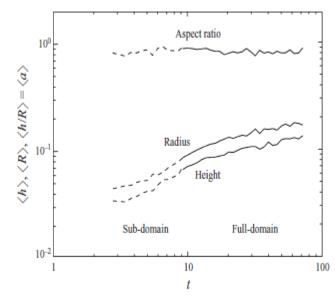


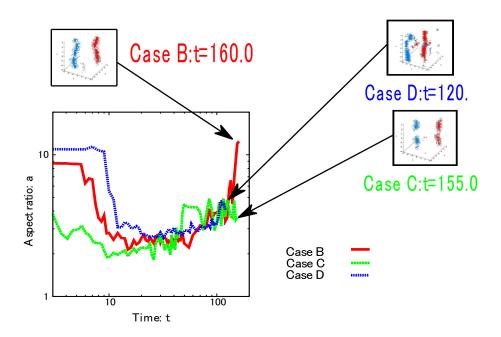
Figure 8. The population-mean vortex-element radius, $\langle R \rangle(t)$, half-height, $\langle h \rangle(t)$, and aspect ratio, $\langle a \rangle(t)$, from the vortex census.

- 平均半径がほとんど変化しない
- アスペクト比と高さが同程 度のスピードで増加

・平均半径と平均高さが同程度のスピードで増加・アスペクト比の変化がほと

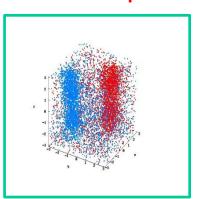
[2]McWilliams J C, Weiss J B and Yavneh I: J.Fluid Mech. 401 1-16, 1999

んどない

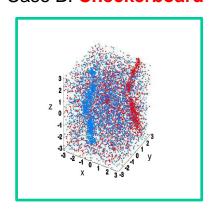


3D view

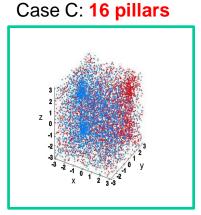
Case A: 3D dipole



Case B: Checkerboard

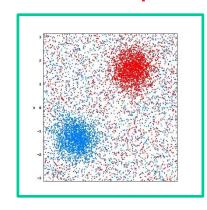


Case D: Checkerboard

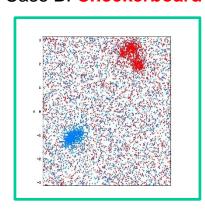


Top view

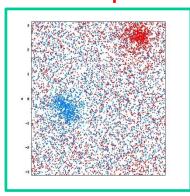
Case A: 3D dipole



Case B: Checkerboard



Case C: 16 pillars



Case D: Checkerboard

